山东省烟台市2022-2023学年八年级上学期期末数学试题 (含答案)
展开2022—2023学年第一学期期末阶段性测试
初三数学试题
(120分钟)
注意事项:
1.答题前,请务必将自己的学校、姓名、准考证号填写在答题卡和试卷规定的位置上。
2.答选择题时,必须使用2B铅笔填涂答题卡上相应题目的正确答案字母代号,如需改动,用橡皮擦干净后,再选涂其他答案。
3.答非选择题时,必须使用0.5毫米黑色签字笔书写;做图、添加辅助线时,必须用2B铅笔。
4.保证答题卡清洁、完整。严禁折叠、严禁在答题卡上做任何标记,严禁使用涂改液、胶带纸、修正带。
5.请在题号所指示的答题区域内作答,写在试卷上或答题卡指定区域外的答案无效。
一、书写与卷面(3分)
书写规范 卷面整洁
二、选择题(本题共10个小题,每小题3分,满分30分)每小题有且只有一个正确答案,请把正确答案的字母代号涂在答题卡上。
1.下列分式中,是最简分式的是( )
A. B. C. D.
2.七巧板是我国的一种传统智力玩具,下列用七巧板拼成的图形是中心对称图形的是( )
A. B. C. D.
3.在中,若,则的度数是( )
A.140° B.120° C.100° D.40°
4.如图,菱形的对角线AC与BD相交于点O,若,,则BD的长为( )
A.4 B.6 C.7 D.8
5.为了落实“作业、睡眠、手机、读物、体质”等五项管理要求,了解学生的睡眠状况,某校调查了一个班50名学生每天的睡眠时间,绘成睡眠时间条形统计图如图所示,则所调查学生睡眠时间的中位数为( )
A.6h B.7h C.7.5h D.8h
6.如图,将三角形纸片剪掉一角得四边形,设与四边形的外角和的度数分别为,,则正确的是( )
A. B. C. D.无法比较与的大小
7.如图所示的扇形统计图描述了某校学生对课后延时服务的打分情况(满分5分),则所打分数的众数为( )
A.5分 B.4分 C.3分 D.45%
8.当m为自然数时,一定能被下列哪个数整除( )
A.5 B.6 C.7 D.8
9.如图,四边形是正方形,E为边CD上一点,绕着点A顺时针旋转90°后到达的位置,连接EF,则的形状是( )
A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.等边三角形
10.如图,等腰直角三角形中,,,将BC绕点B顺时针旋转(),得到BP,连接CP,过点A作交CP的延长线于点H,连接AP,则的度数( )
A.随着的增大而增大 B.随着的增大而减小
C.保持定值45°不变 D.随着的增大,先增大后减小
三、填空题(本大题共6个小题,每小题3分,满分18分)
11.如果关于x的方程有增根,那么m的值为________.
12.若关于x的二次三项式是完全平方式,则k的值是________.
13.已知一组数据,,的平均数和方差分别为5和2,则数据,,的平均数和标准差分别是________.
14.如图,在中,,,的平分线AE交BC于E点,则EC的长为________.
15.如图,将长为5 cm,宽为3 cm的矩形先向右平移2 cm,再向下平移1 cm,得到矩形,则阴影部分的面积为________.
16.如图,在平面直角坐标系中,三个顶点坐标分别为,,,则顶点B的坐标为________.
四、解答题(本大题共9个小题,满分69分)
17.(本题满分6分)
分解因式:(1).
(2)
18.(本题满分5分)
解方程:
19.(本题满分6分)
先化简,然后从的范围内选择一个合适的整数作为x的值代入求值.
20.(本题满分6分)
如图,已知的三个顶点的坐标分别为、、.
(1)画出关于原点O成中心对称的图形;
(2)将绕原点O顺时针旋转90°,画出对应的,并写出点的坐标.
21.(本题满分8分)
核酸检测时采集的样本必须在4小时内送达检测中心,超过时间,样本就会失效.A、B两个采样点到检测中心的路程分别为30 km、36 km.A、B两个采样点的送检车有如下信息:
信息一:B采样点送检车的平均速度是A采样点送检车的1.2倍;
信息二:A、B两个采样点送检车行驶的时间之和为2小时.
若B采样点从开始采集样本到送检车出发用了2.6小时,则B采样点采集的样本会不会失效?
22.(本题满分8分)
在学校组织的“文明出行”知识竞赛中,8(1)和8(2)班参赛人数相同,成绩分为A、B、C三个等级,其中相应等级的得分依次记为A级100分、B级90分、C级80分,其中8(2)班有2人达到A级,将两个班的成绩整理并绘制成如下的统计图.
请解答下列问题:
(1)求各班参赛人数,并补全条形统计图;
(2)此次竞赛中8(2)班成绩的中位数a为________分;
(3)小明同学根据以上信息制作了如下统计表:
| 平均数(分) | 中位数(分) | 方差 |
8(1)班 | m | 90 | n |
8(2)班 | 91 | a | 29 |
请分别求出m和n的值,并从稳定性方面比较两个班的成绩.
23.(本题满分8分)
如图,在矩形中,对角线AC,BD相交于点O,,交BC于F,垂足为E,求的度数.
24.(本题满分10分)
如图,在中,,M、N分别是AD、BC的中点.
(1)求证:四边形是平行四边形;
(2)若,,求BD的长.
25.(本题满分12分)
如图①,中,,点M、N分别是AB、AC上的点,且.连接MN、CM、BN,点D、E、F、G分别是BC、MN、BN、CM的中点,连接E、F、D、G.
(1)判断四边形的形状是_________(不必证明);
(2)现将绕点A旋转一定的角度,其他条件不变(如图②),四边形的形状是否发生变化?证明你的结论;
(3)如图②,在(2)的情况下,请将在原有的条件下添加一个条件,使四边形是正方形.请写出你添加的条件,并在添加条件的基础上证明四边形是正方形.
2022-2023学年第一学期期末阶段性测试
初三数学参考答案及评分意见
一、书写与卷面(3分)
评分标准:分别赋分3,2,1,0.
二、选择题(每小题3分,共30分)
题号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
答案 | B | D | A | D | C | A | B | D | C | C |
三、填空题(每小题3分,共18分)
11., 12., 13.6,, 14.2, 15.18, 16..
四、解答题(17题每小题3分,18题5分,19-20题每小题6分,21-23题每小题8分,24题10分,25题12分,共69分)
17.解:(1)原式.································································3分
(2)原式.·······································································3分
18.解:原方程可变为
方程两边同乘以,得,解得,··························································4分
检验:当时,,
所以原分式方程的解为.·····························································5分
19.解:原式
.···············································································5分
由分式有意义的条件可知,,∴当时,
∴原式.(答案不唯一,如0,3)······················································6分
20.解:(1)如图所示,即为所求;····················································3分
(2)如图所示,即为所求,···························································5分
其中点.··········································································6分
21.解:设A采样点送检车的平均速度是,················································1分
根据题意,得,····································································4分
解得,···········································································5分
经检验,是分式方程的根,····························································6分
∴B采样点送检车的平均速度为,
∴B采样点送检车的行驶时间为,
∵,
∴B采样点采集的样本不会失效.·······················································8分
22.解:(1)∵8(2)班有2人达到A级,且A等级人数占被调查的人数为20%,
∴8(2)班参赛的人数为(人)························································1分
∵8(1)和8(2)班参赛人数相同,
∴8(1)班参赛人数也是10人,························································2分
故8(1)班C等级人数为(人),
补全图形如图:····································································3分
(2)90;·········································································4分
(3)(分),·····································································5分
,···············································································7分
∵8(1)班的方差大于8(2)班的方差,
∴从稳定性看8(2)班的成绩更稳定.···················································8分
23.解:∵四边形是矩形,∴.
∵,
∴.·············································································3分
∵,∴.
∴.·············································································5分
∵,,,
∴,
∴,
∴.·············································································8分
24.(1)证明:∵是平行四边形,
∴,.···········································································1分
∵M、N分别是AD、BC的中点,
∴.
∵,
∴四边形是平行四边形;·····························································3分
(2)如图,连接ND,·······························································4分
∵是平行四边形,∴.
∵N是BC的中点,∴.
∵,
∴.·············································································6分
∵,
∴是等边三角形,
∴,,···········································································7分
∵是的外角,
∴,
∵,
∴,
∴,·············································································9分
∴,
∴.············································································10分
25.解:(1)菱形;································································2分
(2)不变,·······································································3分
证明:由旋转得,∴,
∵,,∴(),
∴.·············································································5分
∵点E、F分别是MN、BN的中点,
∴,,
同理,,,,
∴,,
∴四边形是平行四边形.·····························································6分
且.
∴四边形是菱形;···································································7分
(3)添加条件:,··································································8分
证明:如图,设BM与CN交于点P,DF与BM交于点Q,
由(2)得,
∵,
∴,
∴,
即,
∴.············································································10分
∵,
∴.············································································11分
∵,
∴,············································································12分
∴菱形是正方形.
山东省烟台市海阳市2022-2023学年八年级上学期期末数学试题: 这是一份山东省烟台市海阳市2022-2023学年八年级上学期期末数学试题,共8页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。
山东省烟台市牟平区2022-2023学年八年级上学期期末数学试题(含答案): 这是一份山东省烟台市牟平区2022-2023学年八年级上学期期末数学试题(含答案),共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
山东省烟台市蓬莱区2022-2023学年八年级上学期期末数学试题(含答案): 这是一份山东省烟台市蓬莱区2022-2023学年八年级上学期期末数学试题(含答案),共10页。