|试卷下载
终身会员
搜索
    上传资料 赚现金
    安徽省安庆市大联考2022-2023学年高三理科数学上学期阶段性测试(三)试题(Word版附解析)
    立即下载
    加入资料篮
    安徽省安庆市大联考2022-2023学年高三理科数学上学期阶段性测试(三)试题(Word版附解析)01
    安徽省安庆市大联考2022-2023学年高三理科数学上学期阶段性测试(三)试题(Word版附解析)02
    安徽省安庆市大联考2022-2023学年高三理科数学上学期阶段性测试(三)试题(Word版附解析)03
    还剩20页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    安徽省安庆市大联考2022-2023学年高三理科数学上学期阶段性测试(三)试题(Word版附解析)

    展开
    这是一份安徽省安庆市大联考2022-2023学年高三理科数学上学期阶段性测试(三)试题(Word版附解析),共23页。试卷主要包含了 已知向量满足,则, 已知函数,则在上的值域为等内容,欢迎下载使用。

    大联考

    2022-2023学年高中毕业班阶段性测试(三)

    理科数学

    考生注意:

    1.答题前,考生务必将自己的姓名考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置.

    2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答亲标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.

    3.考试结束后,将本试卷和答题卡一并交回.

    选择题:本题共12小题,每小题5分,共60.在每小题给出的四个选项中,只有一项是符合题目要求的.

    1. 已知集合,则   

    A.  B.  C.  D.

    【答案】D

    【解析】

    【分析】解出两个集合中的不等式,再进行集合的补集和并集运算.

    【详解】不等式解得

    不等式解得

    .

    故选:D

    2. 已知条件,条件,则的(   

    A. 充分不必要条件 B. 必要不充分条件

    C. 充要条件 D. 既不充分又不必要条件

    【答案】B

    【解析】

    【分析】将已知条件转化为逆否命题来判断,在利用充分条件和必要条件的定义进行判断即可得结论

    【详解】命题转化为逆否命题:的充分、必要问题

    因为,有,所以不一定为

    故充分性不成立

    时,则

    所以必要性成立

    所以的必要不充分条件

    由原命题与逆否命题等价性

    所以的必要不充分条件

    故选:B.

    3. ,则   

    A.  B.  C. 1 D.

    【答案】C

    【解析】

    【分析】,可得,进而可得,代入中即可得答案.

    【详解】解:因为

    所以

    所以.

    故选:C.

    4. 已知向量满足,则   

    A. 5 B.  C.  D.

    【答案】D

    【解析】

    【分析】解法一:设,由可得,由,可得,,则有,平方解得,由即可得答案;

    解法二:由,可得,两边平方整理得,解得,即可得.

    【详解】解法一:

    解:设

    因为

    所以

    又因为

    所以,

    则有

    平方得

    整理得

    解得()

    所以

    又因为.

    故选:D.

    解法二:

    解:因为

    所以因为

    又因为

    两边平方得:

    整理得

    即有

    解得()

    所以.

    故选:D.

    5. 已知xy满足约束条件,则的最大值为(   

    A. 7 B. 8 C. 9 D. 10

    【答案】C

    【解析】

    【分析】画出约束条件表示的可行域,确定目标函数经过的特殊点,即可求出目标函数的最大值.

    【详解】约束条件,表示可行域如图:

    可得

    目标函数经过可行域内的点时,目标函数取得最大值9
    故选:C

    6. 已知抛物线的焦点为为该抛物线上一点,且(点为坐标原点),则   

    A. 2 B. 3 C. 4 D. 8

    【答案】C

    【解析】

    【分析】首先求出点坐标,结合抛物线定义、余弦的定义以及诱导公式得到关于的方程,解出即可.

    【详解】时,,解得,故

    其邻角的余弦值为

    所以,化简得,解得(负舍)

    故选:C.

    7. 海上渔业生产发展迅猛,我国自主研发的大型海洋养殖船纷纷下海.网箱养殖人工创造适合鱼类生长的环境,一段时间内,研究人员发现网箱内氧的含量单位:与时间(单位:之间的关系为为网箱内氧的初始含量且),且经过后,网箱内氧的含量减少.若当网箱内氧的含量低于初始含量的时需要人工增氧,则大约经过(    后需要人工增氧.

    参考数据:.

    A. 39 B. 33 C. 31 D. 27

    【答案】D

    【解析】

    【分析】由题意可得,得,设经过后需要人工增氧,则可得,所以,化简计算可得答案.

    【详解】由题意可知

    所以,则,得

    设经过后需要人工增氧,则

    所以

    所以

    ,则

    所以

    所以

    所以大约经过27后需要人工增氧,

    故选:D

    8. 已知在正方体中,分别是棱的中点,是棱上一点,则下列命题中正确的个数为(   

    异面直线之间距离为定值;

    平面平面

    设平面平面,则

    直线与平面所成的角为.

    A. 4 B. 3 C. 2 D. 1

    【答案】B

    【解析】

    【分析】中,异面直线之间的距离找公垂线段;中,面面平行结合性质定理验证;中,线面平行的性质定理可证;中,由线线角确定线面角,计算角的大小验证.

    【详解】如图所示:

    对于,过点作的平行线,与相交于点,则为异面直线的公垂线段,且长度等于正方体棱长,所以异面直线之间的距离为定值,确;

    对于,平面平面,平面平面,若平面平面,则有,而不一定成立错误;

    对于,平面平面平面,所以平面

    平面,平面平面,则正确;

    对于的中点,连接

    平面平面,平面平面平面

    所以平面,直线与平面所成的角为

    中,,直线与平面所成的角为正确.

    故选:B

    9. 已知函数,上的值域为(   

    A.  B.

    C.  D.

    【答案】D

    【解析】

    【分析】先判断函数的奇偶性,再判断时的单调性,进而判断单调性,取端点处的函数值,0处的极限即可判断值域,选出选项.

    【详解】:由题知,定义域为,

    ,

    在定义域上为偶函数,

    则当,

    ,

    ,

    ,

    ,

    单调递减,

    在定义域上为偶函数,

    单调递增,

    单调递增,单调递减,

    ,

    上的值域为.

    故选:D

    10. 已知函数的图象按向量平移后对应的函数为,若上单调,则的最小值为(   

    A.  B.  C.  D.

    【答案】A

    【解析】

    【分析】先利用辅助角公式将函数化简,再按向量平移后得到,然后利用正弦函数的单调性即可求解.

    【详解】因为函数

    函数图象按向量平移后得到

    ,则

    因为上单调,由正弦函数的单调可知:

    要使最小,则0,故有

    解得:

    综上,的最小值为

    故选:A.

    11. 已知双曲线的离心率为,右焦点为,直线均过点且互相垂直,与双曲线的右支交于两点,与双曲线的左支交于点,为坐标原点,当三点共线时,   

    A. 2 B. 3 C. 4 D. 5

    【答案】B

    【解析】

    【分析】根据题意作出图形,由双曲线的对称性及双曲线的定义,利用勾股定理建立方程求解可得.

    【详解】设双曲线另一焦点为,连接,如图,

    因为三点共线,

    所以由双曲线的对称性知,四边形为矩形,

    ,则

    中,,即

    ,解得(舍去),

    中,,即

    解得,即.

    故选:B

    12. 已知,则(   

    A.  B.

    C.  D.

    【答案】A

    【解析】

    【分析】由所给数据可构造函数,利用导数判断函数单调性可比较,再由不等式性质可比较,利用作商法比较大小.

    【详解】,则

    时,,所以函数在上单调递减,

    ,即

    ,即

    综上,.

    故选:A

    二、填空题:本题共4小题,每小题5分,共20.

    13 已知向量. ,则实数__________.

    【答案】##2.75

    【解析】

    【分析】根据向量坐标表示的减法原则,算出,若,则有,列出方程即可求得a.

    【详解】解:已知

    ,则

    解得

    故答案为:.

    14. 已知圆的方程为是圆上一动点,点为线段的中点,则的最小值为__________.

    【答案】##

    【解析】

    【分析】点轨迹为以为圆1为半径的圆,的最小值为.

    【详解】,点为线段中点,有,得

    在圆上,满足圆的方程,则有,化简得点轨迹方程为

    点轨迹为以为圆心,1为半径的圆,如图所示,

    ,所以的最小值为.

    故答案为:

    15. 如图,有一半径为1的球形灯泡,要为其做一个上窄下宽的圆台形灯罩,要求灯罩对应的圆台的轴截面为球形灯泡对应的大圆的外切等腰梯形,则灯罩的表面积(不含下底面)至少为__________.

    【答案】##

    【解析】

    【分析】轴截面为等腰梯形,设上底为,下底为,由几何知识得间关系.

    后表示出灯罩表面积,可得最小值.

    【详解】由题可得,轴截面为等腰梯形.如图,EFP分别为圆在ADBCAB上切点.

    ,且三点共线.

    .其中. 则由切线长定理得.

    ,则

    平分.同理可得,平分,又,则.

    ,由射影定理得:,故.

    设灯罩的表面积为,灯罩上表面积为,灯罩侧面面积为,则.

    为圆台母线长,为上下底面半径).,又

    当且仅当,即取等号.

    故答案为:.

    【点睛】关键点点睛:本题涉及圆台的表面积公式.解决本题的关键为能由几何知识得到及能识记圆台的侧面积公式.

    16. 已知数列的前项和为,且满足,若使不等式成立的最大整数为10,则的取值范围是__________.

    【答案】

    【解析】

    【分析】构造得,利用累加法得到

    讨论,再结合等差数列前和公式及二次函数零点分布即可得到关于的不等式组,解出即可.

    【详解】,两边同除得,

    所以

    ,化简得

    时,

    ,故其无最大值,不合题意,舍去;

    时,

    是以为首项,公差为的等差数列,

    ,化简得,

    ,故,即

    ,显然

    且两根之积为

    则有,即,结合

    解得

    故答案为:.

    【点睛】关键点睛:本题通过构造得到,然后利用累加法才能得到,即得到表达式,结合等差数列前和公式才能得到的表达式,最后解含参的一元二次不等式,利用二次函数根的分布才能得到有关不等式组.

    三、解答题:共70.解答应写出文字说明,证明过程或演算步骤.

    17. 已知在中,角所对的边分别为,且.

    1

    2设点是边的中点,若,求的取值范围.

    【答案】1   

    2

    【解析】

    【分析】1)利用诱导公式化简给定等式,再利用正弦定理边化角即可求解作答.

    2)根据给定条件,利用向量数量积的运算律及性质,结合均值不等式求解作答.

    【小问1详解】

    中,依题意有,由正弦定理得:

    ,即,则有,即,而

    所以.

    【小问2详解】

    中,由(1)知,,又,点是边的中点,则,

    于是得

    ,显然,当且仅当时取等号,

    因此,即

    所以的取值范围是.

    18. 已知函数.

    1的图象在点处的切线斜率为,求的值;

    2时,判断内有几个零点,并证明.

    【答案】1   

    21个,证明见解析

    【解析】

    【分析】1)利用在切点处的导数与切线斜率的关系即可求解;

    2)转化问题为当时,内的交点个数问题,利用导函数求得内的值域,即可求解.

    【小问1详解】

    由题,

    ,即

    解得

    【小问2详解】

    时,内有1个零点,证明如下:

    由题,令,即,则

    ,所以

    因为当时,

    所以当时,,即上单调递减,

    因为,当时,

    所以

    所以当时,内有一个交点,

    即当时,内有1个零点.

    19. 已知数列的前项和为,且.

    1的通项公式;

    2设数列满足,记的前项和为,若对任意恒成立,求实数的最大值.

    【答案】1   

    23

    【解析】

    【分析】1)运用公式,求解的通项公式

    2)解出的通项,运用错位相减法求前项和为,代入中求解实数的最大值.

    【小问1详解】

    ,由

    时,

    时,由,有,两式相减,得

    时也成立,

    是以为首项为公比的等比数列,

    【小问2详解】

    两式相减,得

    .

    对任意恒成立,

    时,恒成立,

    时,则有,解得

    ,实数的最大值为3.

    20. 如图,在四棱锥中,平面平面平面,动在棱上运动.

    1求证:平面

    2时,求二面角的余弦值.

    【答案】1证明见解析   

    2

    【解析】

    【分析】1)由平面,结合直线与平面平行的性质可得到,结合可得到,过点,垂足为,可得到.由平面平面,结合平面与平面垂直的性质可得到平面,可得到,进而得到平面.

    2)分别以为原点,以所在直线为轴建立空间直角坐标系,由可得点坐标,从而结合空间向量与法向量可求得二面角的余弦值.

    【小问1详解】

    平面,且平面,平面平面

    ,过点,垂足为,如图所示,

    四边形为矩形,即

    可得,即

    平面平面,且平面平面平面

    平面

    平面

    平面平面,且

    平面.

    【小问2详解】

    分别以为原点,以所在直线为轴建立空间直角坐标系,

    ,则

    ,则,解得

    ,所以

    设平面的一个法向量为

    ,即,即

    ,则

    由(1)知平面,所以平面的一个法向量为

    设二面角

    所以二面角的余弦值为.

    21. 已知椭圆的左、右顶点分别为,焦距为2,离心率为.

    1求椭圆的方程.

    2已知点的坐标为,是否存在直线,使得对于上任意一点不在椭圆上),若直线交椭圆于另一点,直线交椭圆于另一点,恒有三点共线?若存在,求出的方程;若不存在,请说明理由.

    【答案】1   

    2直线存在,直线方程为.

    【解析】

    【分析】1)利用椭圆的几何性质建立方程组求解即可;
    2)假设存在满足题意的直线,设,得到直线的方程代入椭圆求出点坐标,直线的方程代入椭圆求出点坐标,由三点共线建立方程,等式恒成立,求t的值即可.

    【小问1详解】

    由题意可知,,解得

    椭圆的方程为.

    【小问2详解】

    由(1)可知,,设

    ,点轴上,则重合,重合,满足有三点共线.

    ,直线的方程为,代入椭圆方程消去得:

    解得,则

    同理,直线的方程为,代入椭圆方程可求得

    三点共线,的坐标为,则有

    可得

    化简得

    上任意一点(不在椭圆上),等式恒成立,

    则有,解得,

    直线存在,直线方程为.

    【点睛】1.解答直线与椭圆的题目时,时常把两个曲线的方程联立,消去x(y)建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系.

    2.注意观察应用题设中的每一个条件,明确确定直线、椭圆的条件,涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.

    3.强化有关直线与椭圆联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.

    22. 已知函数.

    1时,取得极值,求的单调区间;

    2若函数,求使恒成立的实数的取值范围.

    【答案】1单调递增区间是,单调递减区间是   

    2

    【解析】

    【分析】1)首先求函数的导数,利用极值点,求,再求函数的单调区间;

    2)首先不等式变形为,再利用换元和参变分离为,转化为利用导数求函数的最值问题,即可求解.

    【小问1详解】

    因为函数在处取得极值,所以,则

    时,,得

    时,,函数单调递增,当时,,函数单调递减,所以当时,函数取得极大值,

    综上可知函数的单调递增区间是,函数的单调递减区间是

    【小问2详解】

    恒成立,

    ,设,所以函数单调递增,

    不等式转化为时恒成立,

    转化为恒成立,即

    ,解得:

    时,,函数单调递减,当时,,函数单调递增,所以当时,函数取得最小值,最小值是

    所以实数的取值范围为

    相关试卷

    河南省部分学校2022-2023学年高三上学期12月大联考理科数学试题(Word版附解析): 这是一份河南省部分学校2022-2023学年高三上学期12月大联考理科数学试题(Word版附解析),共25页。试卷主要包含了本试卷分选择题和非选择题两部分,答題前,考生务必用直径0,本试卷主要命题范图, 已知定义在上的函数满足等内容,欢迎下载使用。

    安徽省安庆市第一中学2021-2022学年高三上学期阶段性测试一数学(理科)试题(Word版附解析): 这是一份安徽省安庆市第一中学2021-2022学年高三上学期阶段性测试一数学(理科)试题(Word版附解析),共19页。试卷主要包含了10, “”是“,”的, 已知,,,则, 定义, 函数的大致图象是, 已知函数,等内容,欢迎下载使用。

    2023年高三1月大联考(全国乙卷)理科数学试题(Word版附解析): 这是一份2023年高三1月大联考(全国乙卷)理科数学试题(Word版附解析),共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map