







人教版22.2二次函数与一元二次方程教课内容ppt课件
展开
这是一份人教版22.2二次函数与一元二次方程教课内容ppt课件,共50页。PPT课件主要包含了自由讨论等内容,欢迎下载使用。
______是自变量,____是____的函数。
当 y = 0 时,
ax² + bx + c = 0
是我们已学习的“一元二次方程”
一元二次方程根的情况与b²-4ac的关系?
我们知道:代数式b2-4ac对于方程的根起着关键的作用.
一元二次方程根的情况与b²-4ac的关系
探究一:二次函数y=ax2+bx+c与一元二次方程ax2+bx+c=0有什么关系?
1、一次函数y=kx+b与一元一次方程kx+b=0有什么关系?
2、你能否用类比的方法猜想二次函数y=ax2+bx+c与一元二次方程ax2+bx+c=0的关系?
以 40 m /s的速度将小球沿与地面成 30°角的方向击出时,球的飞行路线是一条抛物线,如果不考虑空气阻力,球的飞行高度 h (单位:m)与飞行时间 t (单位:s)之间具有关系:h= 20 t – 5 t 2 考虑下列问题: (1)球的飞行高度能否达到 15 m? 若能,需要多少时间? (2)球的飞行高度能否达到 20 m? 若能,需要多少时间? (3)球的飞行高度能否达到 20.5 m?为什么? (4)球从飞出到落地要用多少时间?
解:(1)当 h = 15 时,
20 t – 5 t 2 = 15
t 2 - 4 t +3 = 0
t 1 = 1,t 2 = 3
当球飞行 1s 和 3s 时,它的高度为 15m .
以 40 m /s的速度将小球沿与地面成 30°角的方向击出时,球的飞行路线是一条抛物线,如果不考虑空气阻力,球的飞行高度 h (单位:m)与飞行时间 t (单位:s)之间具有关系:h= 20 t – 5 t 2 考虑下列问题: (1)球的飞行高度能否达到 15 m? 若能,需要多少时间?
(2)当 h = 20 时,
20 t – 5 t 2 = 20
t 2 - 4 t +4 = 0
t 1 = t 2 = 2
当球飞行 2s 时,它的高度为 20m .
以 40 m /s的速度将小球沿与地面成 30°角的方向击出时,球的飞行路线是一条抛物线,如果不考虑空气阻力,球的飞行高度 h (单位:m)与飞行时间 t (单位:s)之间具有关系:h= 20 t – 5 t 2 考虑下列问题:(2)球的飞行高度能否达到 20 m? 若能,需要多少时间?
(3)当 h = 20.5 时,
20 t – 5 t 2 = 20.5
t 2 - 4 t +4.1 = 0
因为(-4)2-4×4.1 < 0 ,所以方程无实根。球的飞行高度达不到 20.5 m.
以 40 m /s的速度将小球沿与地面成 30°角的方向击出时,球的飞行路线是一条抛物线,如果不考虑空气阻力,球的飞行高度 h (单位:m)与飞行时间 t (单位:s)之间具有关系:h= 20 t – 5 t 2 考虑下列问题:(3)球的飞行高度能否达到 20.5 m?为什么?
(4)当 h = 0 时,
20 t – 5 t 2 = 0
t 2 - 4 t = 0
t 1 = 0,t 2 = 4
当球飞行 0s 和 4s 时,它的高度为 0m ,即 0s时,球从地面飞出,4s 时球落回地面。
以 40 m /s的速度将小球沿与地面成 30°角的方向击出时,球的飞行路线是一条抛物线,如果不考虑空气阻力,球的飞行高度 h (单位:m)与飞行时间 t (单位:s)之间具有关系:h= 20 t – 5 t 2 考虑下列问题:(4)球从飞出到落地要用多少时间?
从上面发现,二次函数y=ax2+bx+c何时为一元二次方程?
一般地,当y取定值时,二次函数为一元二次方程。
如:y=5时,则5=ax2+bx+c就是一个一元二次方程。
例如,已知二次函数y=-X2+4x的值为3,求自变量x的值.
就是求方程3=-X2+4x的解,
例如,解方程X2-4x+3=0
就是已知二次函数y=X2-4x+3的值为0,求自变量x的值.
已知二次函数,求自变量的值
二次函数与一元二次方程的关系(1)
1、二次函数y = x2+x-2 , y = x2 - 6x +9 , y = x2 – x+ 1的图象如图所示。
(1).每个图象与x轴有几个交点?(2).一元二次方程? x2+x-2=0 , x2 - 6x +9=0有几个根? 验证一下一元二次方程x2 – x+ 1 =0有根吗?(3).二次函数y=ax2+bx+c的图象和x轴交点的坐标与 一元二次方程ax2+bx+c=0的根有什么关系?
(3),二次函数y=ax2+bx+c的图象和x轴交点的坐标与 一元二次方程ax2+bx+c=0的根有什么关系?
(-2,0),(1,0)
抛物线y=ax2+bx+c与x轴交点的横坐标是方程ax2+bx+c =0的根。
一元二次方程ax2+bx+c=0的两个根为x1,x2 ,则抛物线 y=ax2+bx+c与x轴的交点坐标是(x1,0),(x2,0)
下列二次函数的图象与 x 轴有交点吗? 若有,求出交点坐标. (1) y = 2x2+x-3 (2) y = 4x2 -4x +1 (3) y = x2 – x+ 1
令 y= 0,解一元二次方程的根
(1) y = 2x2+x-3
解:当 y = 0 时,
2x2+x-3 = 0
(2x+3)(x-1) = 0
x 1 = ,x 2 = 1
所以与 x 轴有交点,有两个交点。
y =a(x-x1)(x- x 2)
(2) y = 4x2 -4x +1
4x2 -4x +1 = 0
(2x-1)2 = 0
x 1 = x 2 =
所以与 x 轴有一个交点。
(3) y = x2 – x+ 1
x2 – x+ 1 = 0
所以与 x 轴没有交点。
因为(-1)2-4×1×1 = -3 < 0
确定二次函数图象与 x 轴的位置关系
二次函数与一元二次方程的关系(2)
有两个根有一个根(两个相同的根)没有根
有两个交点有一个交点没有交点
b2 – 4ac > 0
b2 – 4ac = 0
b2 – 4ac < 0
二次函数 y=ax2+bx+c 的图象和x轴交点的三种情况与一元二次方程根的关系
ax2+bx+c = 0 的根
y=ax2+bx+c 的图象与x轴
若抛物线 y=ax2+bx+c 与 x 轴有交点,则________________ 。
b2 – 4ac ≥ 0
△ = b2 – 4ac
二次函数 y=ax2+bx+c 的图象和x轴交点的三种情况与一元二次方程根的关系:
与x轴有两个不同的交点(x1,0)(x2,0)
有两个不同的解x=x1,x=x2
有两个相等的解x1=x2=
2.抛物线y=2x2-3x-5 与x轴有无交点?若无说出理由,若有求出交点坐标?
1.一元二次方程 3 x2+x-10=0的两个根是x1= -2 ,x2=5/3, 那么二次函数y= 3 x2+x-10与x轴的交点坐标是_____.
归纳:一元二次方程ax2+bx+c=0的两个根为x1,x2 ,则抛物线 y=ax2+bx+c与x轴的交点坐标是(x1,0),(x2,0)
(2.5,0), (-1,0)
(-2,0) (5/3,0)
1.不与x轴相交的抛物线是( )A. y = 2x2 – 3 B. y=-2 x2 + 3 C. y= -x2 – 3x D. y=-2(x+1)2 -3
2.若抛物线 y = ax2+bx+c= 0,当 a>0,c