八年级数学上册期末难点特训(四)选填压轴题50道
展开
这是一份八年级数学上册期末难点特训(四)选填压轴题50道,共63页。试卷主要包含了已知时,分式的值为等内容,欢迎下载使用。
期末难点特训(四)选填压轴题50道
1.如图①,在Rt△ABC中,∠ACB=90°,D是斜边AB的中点,动点P从B点出发,沿B→C→A运动,设S△PDB=y,点P运动的路程为x,若y与x之间的函数图象如图②所示,则AC的长为( )
A.14 B.7 C.4 D.2
2.如图,等边的顶点,,规定把等边“先沿轴翻折,再向左平移1个单位”为一次变换,这样连续经过2021次变换后,顶点C的坐标为( )
A. B. C. D.
3.如图,,、交于点,为斜边的中点,若,.则和之间的数量关系为( )
A. B.
C. D.
4.如图,已知一次函数y=kx+b的图象经过点A(﹣1,2)和点B(﹣2,0),一次函数y=mx的图象经过点A,则关于x的不等式组0<kx+b<mx的解集为( )
A.﹣2<x<﹣1 B.﹣1<x<0 C.x<﹣1 D.x>﹣1
5.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y.则下列图象能大致反映y与x的函数关系的是( )
A.B.C. D.
6.周末,小明骑自行车从家里出发去游玩.从家出发1小时后到达迪诺水镇,游玩一段时间后按原速前往万达广场.小明离家1小时50分钟后,妈妈驾车沿相同路线前往万达广场.妈妈出发25分钟时,恰好在万达广场门口追上小明.如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象,则下列说法中正确的是( )
A.小明在迪诺水镇游玩1h后,经过h到达万达广场
B.小明的速度是20km/h,妈妈的速度是60km/h
C.万达广场离小明家26km
D.点C的坐标为(,25)
7.如图,一次函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式0<ax+4<2x的解集是( )
A.0<x< B.<x<6 C.<x<4 D.0<x<3
8.在数轴上,点表示-2,点表示为数轴上两点,点从点出发以每秒个单位长度的速度向左运动,同时点从点出发以每秒个单位长度的速度向左运动,点到达原点后,立即以原来的速度返回,当点回到点时,点与点同时停止运动.设点运动的时间为秒,点与点之间的距离为个单位长度,则下列图像中表示与的函数关系的是( )
A. B.
C. D.
9.如图,中,,垂足为,,为直线上方的一个动点,的面积等于的面积的,则当最小时,的度数为( )
A. B. C. D.
10.已知时,分式的值为.若取正整数,则的取值范围为( )
A. B. C. D.
11.如图,在中,平分.边的垂直平分线分别交于点.以下说法错误的是( )
A. B. C. D.
12.如图所示,在△ABC中,内角∠BAC与外角∠CBE的平分线相交于点P,BE=BC,PG∥AD交BC于F,交AB于G,连接CP.下列结论:①∠ACB=2∠APB;②S△PAC∶S△PAB=PC∶PB;③BP垂直平分CE;④∠PCF=∠CPF.其中正确的有( )
A.①②④ B.①③④ C.②③④ D.①③
13.如图,,已知中,,,的顶点、分别在边、上,当点在边上运动时,点随之在边上运动,的形状保持不变,在运动过程中,点到点的最大距离为( )
A.12.5 B.13 C.14 D.15
14.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是( )
A.①②③ B.①②④ C.③④ D.①③④
15.如图,,,与交于点,点是的中点,.若,,则的长是( )
A. B.
C.3 D.5
16.如图,长方形纸片ABCD中,AB=4,BC=6,点E在AB边上,将纸片沿CE折叠,点B落在点F处,EF,CF分别交AD于点G,H,且EG=GH,则AE的长为( )
A. B.1 C. D.2
17.如图,在平面直角坐标系xOy中,直线y=﹣x+4与x轴、y轴分别交于点A、B,M是y轴上的点(不与点B重合),若将△ABM沿直线AM翻折,点B恰好落在x轴正半轴上,则点M的坐标为( )
A.(0,﹣4 ) B.(0,﹣5 ) C.(0,﹣6 ) D.(0,﹣7 )
18.如图,直线分别交轴、轴于点、,直线与直线交于点,点在第二象限,过、两点分别作于,于,且,,则的长为( )
A.2 B. C. D.1
19.一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为( )
A.(﹣5,3) B.(1,﹣3) C.(2,2) D.(5,﹣1)
20.设max{a,b}表示a,b两个数中的最大值,例如max{0,2}=2,max{12,8}=12,则关于x的函数y=max{2x,x+2}可以是( )
A. B. C. D.
21.如图,△ABC 是等边三角形,P 是 BC 上任意一点,PD⊥AB,PE⊥AC,连接 DE,记△ADE 的周长为,四边形 BDEC 的周长为,则与的大小关系是( )
A.= B.> C.< D.无法确定
22.在平面直角坐标系内,点 为坐标原点, , ,若在该坐标平面内有以 点 (不与点 重合)为一个顶点的直角三角形与 全等,且这个以点 为顶点的直角三角形 有一条公共边,则所有符合的三角形个数为( ).
A. B. C. D.
23.如图,在长方形中,点为中点,将沿翻折至,若,,则与之间的数量关系为( )
A. B. C. D.
24.从3,4,5这三个数中任取两个,分别记作p和q(p≠q),构造函数y=px-2和y=x+q,使这两个函数图象交点的横坐标始终小于2,则这样的有序数组(p,q)共有( ).
A.2对 B.3对 C.4对 D.5对
25.在平面直角坐标系中,已知定点A(﹣,3)和动点P(a,a),则PA的最小值为( )
A.2 B.4 C.2 D.4
26.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,D、E分别是AB和CB边上的点,把△ABC沿着直线DE折叠,若点B落在AC边上,则CE的取值范围是_____.
27.已知一次函数(是常数)和.
(1)无论取何值,(是常数)的图像都经过同一个点,则这个点的坐标是_______;
(2)若无论取何值,,则的值是_______.
28.在平面直角坐标系中,的顶点在轴上,,,点在边上,为的中点,为边上的动点(不与重合).下列说法正确的是________(填写所有正确的序号).
①当点运动到中点时,点到和的距离相等;
②当点运动到中点时,;
③当点从点运动到点时,四边形的面积先变大再变小;
④四边形的周长最小时,点的坐标为.
29.如图,在中,,,,点、分别在、上,将沿翻折,使与的中点重合,则的长为______.
30.如图,已知直线AB与y轴交于点A(0,2),与x轴的负半轴交于点B,且∠ABO=30°,点C为x轴的正半轴上一点,将线段CA绕点C按顺时针方向旋转60°得线段CD,连接BD,若BD=,则点C的坐标为_____.
31.如图,Rt△ABC中,∠BAC=90°,分别以△ABC的三条边为直角边作三个等腰直角三角形:△ABD、△ACE、△BCF,若图中阴影部分的面积S1=6.5,S2=3.5,S3=5.5,则S4=_____.
32.如图,在△ABC中,∠ACB=90°,AC=BC=6cm,D是AB的中点,点E在AC上,过点D作DF⊥DE,交BC于点F.如果AE=2cm,则四边形CEDF的周长是_____cm.
33.如图,已知点,点分别为轴和轴正半轴上两点,以为斜边作等腰直角三角形,点,点,点按顺时针方向排列,若的面积为,则点的坐标为_________.
34.已知实数,满足,,则_______.
35.矩形在平面直角坐标系中的位置如图所示,点的坐标为,点是的中点,点在线段上,当的周长最小时,点的坐标是_______.
36.如图,正方形的边长为2,为坐标原点,和分别在轴、轴上,点是边的中点,过点的直线交线段于点,连接,若平分,则的值为__________.
37.如图,已知点,直线与两坐标轴分别交于A,B两点,D,E分别是AB,OB上的动点,则周长的最小值是______.
38.已知正方形,,……按如图所示放置,点,,在直线上,,,……在轴上,则正方形的边长为______.
39.如图,直线y=ax+b和y=kx+2与x铀分别交于点A(﹣2,0),点B(2.8,0).则的解集为_____.
40.如图,已知A(6,0)、B(﹣3,1),点P在y轴上,当y轴平分∠APB时,点P的坐标为_________.
41.已知和一点,,,,则______.
42.如图,在平面鱼角坐标系xOy中,A(﹣3,0),点B为y轴正半轴上一点,将线段AB绕点B旋转90°至BC处,过点C作CD垂直x轴于点D,若四边形ABCD的面积为36,则线AC的解析式为_____.
43.如图,在△ABC中,AB=6,AC=5,BC=9,∠BAC的角平分线AP交BC于点P,则CP的长为_____.
44.如图,点坐标为,直线交轴,轴于点、点,点为直线上一动点,则的最小值为_________.
45.如图,在△ABC中,AB=5,AC=13,BC边上的中线AD=6,则△ABD的面积是______.
46.如图①的长方形ABCD中, E在AD上,沿BE将A点往右折成如图②所示,再作AF⊥CD于点F,如图③所示,若AB=2,BC=3,∠BEA=60°,则图③中AF的长度为_______.
47.已知一次函数y=mx-3的图像与x轴的交点坐标为(x0,0),且2≤x0≤3,则m的取值范围是________.
48.在△ABC中,BA=BC,AC=14,S△ABC=84,D为AB上一动点,连接CD,过A作AE⊥CD于点E,连接BE,则BE的最小值是______.
49.已知函数=-x+2,=4x-5,=x+4,若无论 x取何值,y 总取 ,, 中的最大值,则 y的最小值是_________.
50.已知A(0,0),B(2,0),C(3,3),如果在平面直角坐标系中存在一点D,使得△ABD与△ABC全等,那么点D的坐标为______.
答案与解析
1.如图①,在Rt△ABC中,∠ACB=90°,D是斜边AB的中点,动点P从B点出发,沿B→C→A运动,设S△PDB=y,点P运动的路程为x,若y与x之间的函数图象如图②所示,则AC的长为( )
A.14 B.7 C.4 D.2
【答案】C
【详解】如下图所示,过点D作DE⊥BC于点E,
则S△DPB=BP·DE,即DE·,
由图2中的信息可知,当点P运动到点C时,y最大=7,此时x=BC=7,即:
DE×7=7,解得:DE=2,
∵在△ABC中,∠ACB=90°,点D是AB边的中点,
∴CD=DB,
又∵DE⊥BC于点E,
∴CE=BE,
又∵点D是AB边的中点,
∴DE是△ABC的中位线,
∴AC=2DE=4.
故选C.
【点睛】本题解题的要点是过点D作DE⊥BC于点E,利用“直角三角形斜边上的中线等于斜边的一半”结合“等腰三角形的三线合一”证明DE是△ABC的中位线,这样即可通过由函数图象中的信息求得DE的长,来求得AC的长了.
2.如图,等边的顶点,,规定把等边“先沿轴翻折,再向左平移1个单位”为一次变换,这样连续经过2021次变换后,顶点C的坐标为( )
A. B. C. D.
【答案】D
【分析】先求出点C坐标,第一次变换,根据轴对称判断出点C变换后在x轴下方然后求出点C纵坐标,再根据平移的距离求出点C变换后的横坐标,最后写出第一次变换后点C坐标,同理可以求出第二次变换后点C坐标,以此类推可求出第n次变化后点C坐标.
【详解】∵△ABC是等边三角形AB=3-1=2
∴点C到x轴的距离为1+,横坐标为2
∴C(2,)
由题意可得:第1次变换后点C的坐标变为(2-1,),即(1,),
第2次变换后点C的坐标变为(2-2,),即(0,)
第3次变换后点C的坐标变为(2-3,),即(-1,)
第n次变换后点C的坐标变为(2-n,)(n为奇数)或(2-n,)(n为偶数),
∴连续经过2021次变换后,等边的顶点的坐标为(-2019,),
故选:D.
【点睛】本题考查了利用轴对称变换(即翻折)和平移的特点求解点的坐标,在求解过程中找到规律是关键.
3.如图,,、交于点,为斜边的中点,若,.则和之间的数量关系为( )
A. B.
C. D.
【答案】A
【分析】根据题意可得,再由直角三角形斜边的中线等于斜边的一半,可证,继而证明,解得,最后根据三角形内角和180°定理,分别解得与的关系,整理即可解题.
【详解】
是的中点,
∴∠CAM=∠MCA,
,
故选:A.
【点睛】本题考查全等三角形的判定与性质、直角三角形斜边中线的性质、等腰三角形的性质、三角形内角和180°等知识,是重要考点,难度较易,掌握相关知识是解题关键.
4.如图,已知一次函数y=kx+b的图象经过点A(﹣1,2)和点B(﹣2,0),一次函数y=mx的图象经过点A,则关于x的不等式组0<kx+b<mx的解集为( )
A.﹣2<x<﹣1 B.﹣1<x<0 C.x<﹣1 D.x>﹣1
【答案】A
【分析】利用函数图象,写出在x轴上方且函数y=kx+b的函数值小于函数y=mx的函数值对应的自变量的范围即可.
【详解】解:当x>﹣2时,y=kx+b>0;
当x<﹣1时,kx+b<mx,
所以不等式组0<kx+b<mx的解集为﹣2<x<﹣1.
故选:A.
【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.
5.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y.则下列图象能大致反映y与x的函数关系的是( )
A. B. C. D.
【答案】B
【分析】根据特殊点和三角形的面积公式解答即可.
【详解】解:由题意可知,P点在AD段时面积为零,在DC段时面积y由0逐渐增大到8,在CB段因为底和高不变所以面积y不变,在BA段时面积y逐渐减小为0,
故选:B.
【点睛】本题考查动点问题的函数图象识别,根据动点P的位置正确得出三角形的面积变化情况是解答的关键.
6.周末,小明骑自行车从家里出发去游玩.从家出发1小时后到达迪诺水镇,游玩一段时间后按原速前往万达广场.小明离家1小时50分钟后,妈妈驾车沿相同路线前往万达广场.妈妈出发25分钟时,恰好在万达广场门口追上小明.如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象,则下列说法中正确的是( )
A.小明在迪诺水镇游玩1h后,经过h到达万达广场
B.小明的速度是20km/h,妈妈的速度是60km/h
C.万达广场离小明家26km
D.点C的坐标为(,25)
【答案】B
【分析】根据题意和函数图象中的数据,可以判断各个选项中的说法是否正确,从而可以解答本题.
【详解】解:由图象可得,
小明在迪诺水镇游玩1h后,经过到达万达广场,故选项A错误;
小明的速度为20÷1=20(km/h),妈妈的速度是(20+20×)÷=60(km/h),故选项B正确;
万达广场离小明家20+20×=20+5=25(km),故选项C错误;
点C的坐标为(,25),故选项D错误;
故选:B.
【点睛】本题考查函数图像,掌握函数图像的特征,仔细阅读图像,从中找到需要的信息是解题关键.
7.如图,一次函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式0<ax+4<2x的解集是( )
A.0<x< B.<x<6 C.<x<4 D.0<x<3
【答案】B
【分析】先求解的坐标,再求解一次函数的解析式及的坐标,结合函数图像解0<ax+4<2x即可得到答案.
【详解】解: 一次函数y=2x和y=ax+4的图象相交于点A(m,3),
令 则
不等式0<ax+4,
的图像上的点在轴的上方,
所以结合图像可得:<
ax+4<2x,
的图像在的图像的上方,
>,
所以:不等式0<ax+4<2x的解集是<x<6.
故选:
【点睛】本题考查的是利用待定系数法求解一次函数的解析式,利用一次函数的图像解不等式组,掌握利用图像解决问题是解题的关键.
8.在数轴上,点表示-2,点表示为数轴上两点,点从点出发以每秒个单位长度的速度向左运动,同时点从点出发以每秒个单位长度的速度向左运动,点到达原点后,立即以原来的速度返回,当点回到点时,点与点同时停止运动.设点运动的时间为秒,点与点之间的距离为个单位长度,则下列图像中表示与的函数关系的是( )
A. B.
C. D.
【答案】B
【分析】数轴上两点之间的距离等于靠近右边点对应的数值减去左边点对应的数值,这是计算的基础;其次,要学会分段分析,分0≤<x≤2和2<x≤4求解,用x表示点P表示的数为-2-x,点Q表示的数为4-2x或2x-4,具体计算画图即可.
【详解】∵A表示-2,B表示4,
∴BA=4-(-2)=6,
∴当x=0时,PQ=AB=6;
∵OB=4个单位,点Q的速度是2个单位/s,
∴Q运动到原点的时间为4÷2=2(s),
∴当0<x≤2时,
点P表示的数为-2-x,点Q表示的数为4-2x,
∴PQ=4-2x-(-2-x)=6-x,
∴当x=2时,
y=6-2=4,
∴当2<x≤4时,点Q从返回运动,
点P表示的数为-2-x,点Q表示的数为2x-4,
∴PQ=2x-4-(-2-x)=3x-2,
∴当x=4时,
y=12-2=10,
只有B图像与上面的分析一致,
故选B.
【点睛】本题考查了数轴上两点之间的距离,数轴上的点与表示的数的关系,路程,速度和时间的关系,根据时间的大小,正确分类表示动线段PQ的长度是解题的关键.
9.如图,中,,垂足为,,为直线上方的一个动点,的面积等于的面积的,则当最小时,的度数为( )
A. B. C. D.
【答案】B
【分析】由三角形面积关系得出P在与BC平行,且到BC的距离为AD的直线l上,作点B关于直线l的对称点B',连接B'C交l于P,则BB'⊥l,PB=PB',此时点P到B、C两点距离之和最小,作PM⊥BC于M,则BB'=2PM=AD,证明△BB'C是等腰直角三角形,得出∠B'=45°,求出∠PBB'=∠B'=45°,即可得出答案.
【详解】∵S△PBC=S△ABC,,
∴P在与BC平行,且到BC的距离为AD的直线l上,如图,
∴l∥BC,
作点B关于直线l的对称点B',连接B'C交l于P,
则BB'⊥l,PB=PB',此时点P到B、C两点距离之和最小,
作PM⊥BC于M,则BB'=2PM=AD,
∵AD⊥BC,AD=BC,
∴BB'=BC,BB'⊥BC,
∴△BB'C是等腰直角三角形,
∴∠B'=45°,
∵PB=PB',
∴∠PBB'=∠B'=45°,
∴∠PBC=90°−45°=45°;
故选B.
【点睛】本题考查了轴对称−最短路线问题、等腰直角三角形的判定与性质、等腰三角形的性质、三角形面积等知识;熟练掌握轴对称的性质是解题的关键.
10.已知时,分式的值为.若取正整数,则的取值范围为( )
A. B. C. D.
【答案】C
【分析】先把化为,再根据条件和a的范围,即可得到答案.
【详解】∵=,
又∵时,分式的值为,
∴,
∵取正整数,即a≥1,
∴,
∴,即m≥,
又∵,
∴,即m
相关试卷
这是一份期末难点特训(三)选填压轴50道-【微专题】2022-2023学年九年级数学下册常考点微专题提分精练(人教版),文件包含期末难点特训三选填压轴50道原卷版docx、期末难点特训三选填压轴50道解析版docx等2份试卷配套教学资源,其中试卷共86页, 欢迎下载使用。
这是一份苏科版七年级数学上册常考题提分精练 期末难点特训(三)选填压轴题50道(原卷版),共45页。试卷主要包含了在一列数等内容,欢迎下载使用。
这是一份人教版七年级数学上册常考提分精练 期末难点特训(三)选填压轴题50道(原卷版+解析版)(1),共46页。试卷主要包含了已知,将两边长分别为a和b,如图,是由一些火柴棒搭成的图案等内容,欢迎下载使用。