所属成套资源:2022年高考数学真题分类汇编
五年2018-2022高考数学真题按知识点分类汇编19-平面解析几何(直线与方程)(含解析)
展开
这是一份五年2018-2022高考数学真题按知识点分类汇编19-平面解析几何(直线与方程)(含解析),共21页。试卷主要包含了单选题,多选题,填空题,解答题,双空题等内容,欢迎下载使用。
五年2018-2022高考数学真题按知识点分类汇编19-平面解析几何(直线与方程)(含解析)
一、单选题
1.(2022·全国·统考高考真题)椭圆的左顶点为A,点P,Q均在C上,且关于y轴对称.若直线的斜率之积为,则C的离心率为( )
A. B. C. D.
2.(2022·全国·统考高考真题)图1是中国古代建筑中的举架结构,是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中是举,是相等的步,相邻桁的举步之比分别为.已知成公差为0.1的等差数列,且直线的斜率为0.725,则( )
A.0.75 B.0.8 C.0.85 D.0.9
3.(2021·全国·统考高考真题)抛物线的焦点到直线的距离为,则( )
A.1 B.2 C. D.4
4.(2020·全国·统考高考真题)点(0,﹣1)到直线距离的最大值为( )
A.1 B. C. D.2
5.(2020·浙江·统考高考真题)已知点O(0,0),A(–2,0),B(2,0).设点P满足|PA|–|PB|=2,且P为函数y=图像上的点,则|OP|=( )
A. B. C. D.
6.(2020·山东·统考高考真题)直线关于点对称的直线方程是( )
A. B.
C. D.
7.(2020·山东·统考高考真题)已知直线的图像如图所示,则角是( )
A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角
8.(2018·全国·高考真题)已知双曲线的离心率为,则点到的渐近线的距离为
A. B. C. D.
9.(2018·北京·高考真题)在平面直角坐标系中,记为点到直线的距离,当、变化时,的最大值为
A. B.
C. D.
10.(2019·北京·高考真题)已知直线l的参数方程为(t为参数),则点(1,0)到直线l的距离是
A. B. C. D.
二、多选题
11.(2022·全国·统考高考真题)已知O为坐标原点,过抛物线焦点F的直线与C交于A,B两点,其中A在第一象限,点,若,则( )
A.直线的斜率为 B.
C. D.
三、填空题
12.(2022·全国·统考高考真题)设点,若直线关于对称的直线与圆有公共点,则a的取值范围是________.
13.(2022·全国·统考高考真题)设点M在直线上,点和均在上,则的方程为______________.
14.(2021·全国·统考高考真题)双曲线的右焦点到直线的距离为________.
15.(2021·全国·统考高考真题)已知函数,函数的图象在点和点的两条切线互相垂直,且分别交y轴于M,N两点,则取值范围是_______.
16.(2019·江苏·高考真题)在平面直角坐标系中,P是曲线上的一个动点,则点P到直线x+y=0的距离的最小值是_____.
四、解答题
17.(2018·全国·高考真题)设椭圆的右焦点为,过的直线与交于两点,点的坐标为.
(1)当与轴垂直时,求直线的方程;
(2)设为坐标原点,证明:.
18.(2018·全国·高考真题)设抛物线,点,,过点的直线与交于,两点.
(1)当与轴垂直时,求直线的方程;
(2)证明:.
19.(2019·江苏·高考真题)如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P、Q,并修建两段直线型道路PB、QA.规划要求:线段PB、QA上的所有点到点O的距离均不小于圆O的半径.已知点A、B到直线l的距离分别为AC和BD(C、D为垂足),测得AB=10,AC=6,BD=12(单位:百米).
(1)若道路PB与桥AB垂直,求道路PB的长;
(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;
(3)对规划要求下,若道路PB和QA的长度均为d(单位:百米).求当d最小时,P、Q两点间的距离.
五、双空题
20.(2020·北京·统考高考真题)已知双曲线,则C的右焦点的坐标为_________;C的焦点到其渐近线的距离是_________.
参考答案:
1.A
【分析】设,则,根据斜率公式结合题意可得,再根据,将用表示,整理,再结合离心率公式即可得解.
【详解】[方法一]:设而不求
设,则
则由得:,
由,得,
所以,即,
所以椭圆的离心率,故选A.
[方法二]:第三定义
设右端点为B,连接PB,由椭圆的对称性知:
故,
由椭圆第三定义得:,
故
所以椭圆的离心率,故选A.
2.D
【分析】设,则可得关于的方程,求出其解后可得正确的选项.
【详解】设,则,
依题意,有,且,
所以,故,
故选:D
3.B
【分析】首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得的值.
【详解】抛物线的焦点坐标为,
其到直线的距离:,
解得:(舍去).
故选:B.
4.B
【分析】首先根据直线方程判断出直线过定点,设,当直线与垂直时,点到直线距离最大,即可求得结果.
【详解】由可知直线过定点,设,
当直线与垂直时,点到直线距离最大,
即为.
故选:B.
【点睛】该题考查的是有关解析几何初步的问题,涉及到的知识点有直线过定点问题,利用几何性质是解题的关键,属于基础题.
5.D
【分析】根据题意可知,点既在双曲线的一支上,又在函数的图象上,即可求出点的坐标,得到的值.
【详解】因为,所以点在以为焦点,实轴长为,焦距为的双曲线的右支上,由可得,,即双曲线的右支方程为,而点还在函数的图象上,所以,
由,解得,即.
故选:D.
【点睛】本题主要考查双曲线的定义的应用,以及二次曲线的位置关系的应用,意在考查学生的数学运算能力,属于基础题.
6.D
【分析】设对称的直线方程上的一点的坐标为,则其关于点对称的点的坐标为,代入已知直线即可求得结果.
【详解】设对称的直线方程上的一点的坐标为,
则其关于点对称的点的坐标为,
因为点在直线上,
所以即.
故选:D.
7.D
【分析】本题可根据直线的斜率和截距得出、,即可得出结果.
【详解】结合图像易知,,,
则角是第四象限角,
故选:D.
8.D
【详解】分析:由离心率计算出,得到渐近线方程,再由点到直线距离公式计算即可.
详解:
所以双曲线的渐近线方程为
所以点(4,0)到渐近线的距离
故选D
点睛:本题考查双曲线的离心率,渐近线和点到直线距离公式,属于中档题.
9.C
【分析】为单位圆上一点,而直线过点,则根据几何意义得的最大值为.
【详解】为单位圆上一点,而直线过点,
所以的最大值为,选C.
【点睛】与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化.
10.D
【分析】首先将参数方程化为直角坐标方程,然后利用点到直线距离公式求解距离即可.
【详解】直线的普通方程为,即,点到直线的距离,故选D.
【点睛】本题考查直线参数方程与普通方程的转化,点到直线的距离,属于容易题,注重基础知识、基本运算能力的考查.
11.ACD
【分析】由及抛物线方程求得,再由斜率公式即可判断A选项;表示出直线的方程,联立抛物线求得,即可求出判断B选项;由抛物线的定义求出即可判断C选项;由,求得,为钝角即可判断D选项.
【详解】对于A,易得,由可得点在的垂直平分线上,则点横坐标为,
代入抛物线可得,则,则直线的斜率为,A正确;
对于B,由斜率为可得直线的方程为,联立抛物线方程得,
设,则,则,代入抛物线得,解得,则,
则,B错误;
对于C,由抛物线定义知:,C正确;
对于D,,则为钝角,
又,则为钝角,
又,则,D正确.
故选:ACD.
12.
【分析】首先求出点关于对称点的坐标,即可得到直线的方程,根据圆心到直线的距离小于等于半径得到不等式,解得即可;
【详解】解:关于对称的点的坐标为,在直线上,
所以所在直线即为直线,所以直线为,即;
圆,圆心,半径,
依题意圆心到直线的距离,
即,解得,即;
故答案为:
13.
【分析】设出点M的坐标,利用和均在上,求得圆心及半径,即可得圆的方程.
【详解】[方法一]:三点共圆
∵点M在直线上,
∴设点M为,又因为点和均在上,
∴点M到两点的距离相等且为半径R,
∴,
,解得,
∴,,
的方程为.
故答案为:
[方法二]:圆的几何性质
由题可知,M是以(3,0)和(0,1)为端点的线段垂直平分线 y=3x-4与直线的交点(1,-1)., 的方程为.
故答案为:
14.
【分析】先求出右焦点坐标,再利用点到直线的距离公式求解.
【详解】由已知,,所以双曲线的右焦点为,
所以右焦点到直线的距离为.
故答案为:
15.
【分析】结合导数的几何意义可得,结合直线方程及两点间距离公式可得,,化简即可得解.
【详解】由题意,,则,
所以点和点,,
所以,
所以,
所以,
同理,
所以.
故答案为:
【点睛】关键点点睛:
解决本题的关键是利用导数的几何意义转化条件,消去一个变量后,运算即可得解.
16.4.
【分析】将原问题转化为切点与直线之间的距离,然后利用导函数确定切点坐标可得最小距离
【详解】当直线平移到与曲线相切位置时,切点Q即为点P到直线的距离最小.
由,得,,
即切点,
则切点Q到直线的距离为,
故答案为.
【点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法和公式法,利用数形结合和转化与化归思想解题.
17.(1)的方程为或;(2)证明见解析.
【分析】(1)根据与轴垂直,且过点,求得直线的方程为,代入椭圆方程求得点的坐标为或,利用两点式求得直线的方程;
(2)方法一:分直线与轴重合、与轴垂直、与轴不重合也不垂直三种情况证明,特殊情况比较简单,也比较直观,对于一般情况将角相等通过直线的斜率的关系来体现,从而证得结果.
【详解】(1)由已知得,的方程为.
由已知可得,点的坐标为或.
所以的方程为或.
(2)[方法一]:【通性通法】分类+常规联立
当与轴重合时,.
当与轴垂直时,为的垂直平分线,所以.
当与轴不重合也不垂直时,设的方程为,,
则,直线、的斜率之和为.
由得.
将代入得.
所以,.
则.
从而,故、的倾斜角互补,所以.
综上,.
[方法二]:角平分线定义的应用
当直线l与x轴重合或垂直时,显然有.当直线l与x轴不垂直也不重合时,设直线l的方程为,交椭圆于,.
由得.
由韦达定理得.
点A关于x轴的对称点,则直线的方程为.
令,,则直线过点M,.
[方法三]:直线参数方程的应用
设直线l的参数方程为(t为参数).(*)
将(*)式代入椭圆方程中,整理得.
则,.
又,则
,
即.所以.
[方法四]:【最优解】椭圆第二定义的应用
当直线l与x轴重合时,.
当直线l与x轴不重合时,如图6,过点A,B分别作准线的垂线,垂足分别为C,D,则有轴.
由椭圆的第二定义,有,,得,即.
由轴,有,即,于是,且.可得,即有.
[方法五]:角平分线定理逆定理+极坐标方程的应用
椭圆以右焦点为极点,x轴正方向为极轴,得.
设.
.
所以,.
由角平分线定理的逆定理可知,命题得证.
[方法六]:角平分线定理的逆定理的应用
设点O(也可选点F)到直线的距离分别为,根据角平分线定理的逆定理,要证,只需证.
当直线l的斜率为0时,易得.
当直线l的斜率不为0时,设直线l的方程为:.由方程组得恒成立,..
直线的方程为:.
因为点A在直线l上,所以,故.
同理,..
因为,所以,即.
综上,.
[方法七]:【通性通法】分类+常规联立
当直线l与x轴重合或垂直时,显然有.
当直线l与x轴不垂直也不重合时,设直线l的方程为,交椭圆于,.
由得.
由韦达定理得.
所以,
故、的倾斜角互补,所以.
[方法八]:定比点差法
设,,
所以,
由作差可得,,所以,
,又,所以,,
故,、的倾斜角互补,所以.
当时,与轴垂直,为的垂直平分线,所以.
故.
【整体点评】(2)方法一:通过分类以及常规联立,把角相等转化为斜率和为零,再通过韦达定理即可实现,是解决该类问题的通性通法;
方法二:根据角平分线的定义可知,利用点关于轴的对称点在直线上,证直线过点即可;
方法三:利用直线的参数方程证明斜率互为相反数;
方法四:根据点M是椭圆的右准线与x轴的交点,用椭圆的第二定义结合平面几何知识证明,运算量极小,是该题的最优解;
方法五:利用椭圆的极坐标方程以及角平分线定理的逆定理的应用,也是不错的方法选择;
方法六:类比方法五,角平分线定理的逆定理的应用;
方法七:常规联立,同方法一,只是设直线的方程形式不一样;
方法八:定比点差法的应用.
18.(1)或;(2)证明见解析.
【分析】(1)根据题意可得直线的方程为,从而得出点的坐标为或,利用两点式求得直线的方程;
(2)方法一:设直线的方程为,点、,将直线的方程与抛物线的方程联立,列出韦达定理,由斜率公式并结合韦达定理计算出直线、的斜率之和为零,从而得出所证结论成立.
【详解】(1)当与轴垂直时,的方程为,可得的坐标为或.
所以直线的方程为或;
(2)[方法一]:【通性通法】韦达定理+斜率公式
设的方程为,、,
由,得,可知,.
直线、的斜率之和为
,
所以,可知、的倾斜角互补,所以.
[方法2]:【最优解】斜率公式+三点共线的坐标表示
因为M,N在抛物线上,可设,,故,.而A,M,N共线,故,即,化简得.而M,N是不同的点,故,可得.这样.故.
【整体点评】(2)方法一:通过联立方程得出根与系数的关系,再直接使用斜率公式化简即可证出,是此题问题的通性通法;
方法二:通过设点,根据三点共线的坐标表示寻找关系,再利用斜率公式化简证出,省略了联立过程,适当降低了运算量,是此类问题的最优解.
19.(1)15(百米);
(2)见解析;
(3)17+(百米).
【分析】解:解法一:
(1)过A作,垂足为E.利用几何关系即可求得道路PB的长;
(2)分类讨论P和Q中能否有一个点选在D处即可.
(3)先讨论点P的位置,然后再讨论点Q的位置即可确定当d最小时,P、Q两点间的距离.
解法二:
(1)建立空间直角坐标系,分别确定点P和点B的坐标,然后利用两点之间距离公式可得道路PB的长;
(2)分类讨论P和Q中能否有一个点选在D处即可.
(3)先讨论点P的位置,然后再讨论点Q的位置即可确定当d最小时,P、Q两点间的距离.
【详解】解法一:
(1)过A作,垂足为E.
由已知条件得,四边形ACDE为矩形,.
因为PB⊥AB,
所以.
所以.
因此道路PB的长为15(百米).
(2)①若P在D处,由(1)可得E在圆上,则线段BE上的点(除B,E)到点O的距离均小于圆O的半径,所以P选在D处不满足规划要求.
②若Q在D处,连结AD,由(1)知,
从而,所以∠BAD为锐角.
所以线段AD上存在点到点O的距离小于圆O的半径.
因此,Q选在D处也不满足规划要求.
综上,P和Q均不能选在D处.
(3)先讨论点P的位置.
当∠OBP90°时,在中,.
由上可知,d≥15.
再讨论点Q的位置.
由(2)知,要使得QA≥15,点Q只有位于点C的右侧,才能符合规划要求.当QA=15时,.此时,线段QA上所有点到点O的距离均不小于圆O的半径.
综上,当PB⊥AB,点Q位于点C右侧,且CQ=时,d最小,此时P,Q两点间的距离PQ=PD+CD+CQ=17+.
因此,d最小时,P,Q两点间的距离为17+(百米).
解法二:
(1)如图,过O作OH⊥l,垂足为H.
以O为坐标原点,直线OH为y轴,建立平面直角坐标系.
因为BD=12,AC=6,所以OH=9,直线l的方程为y=9,点A,B的纵坐标分别为3,−3.
因为AB为圆O的直径,AB=10,所以圆O的方程为x2+y2=25.
从而A(4,3),B(−4,−3),直线AB的斜率为.
因为PB⊥AB,所以直线PB的斜率为,
直线PB的方程为.
所以P(−13,9),.
因此道路PB的长为15(百米).
(2)①若P在D处,取线段BD上一点E(−4,0),则EO=4
相关试卷
这是一份22-平面解析几何(圆锥曲线之双曲线)-五年(2018-2022)高考数学真题按知识点分类汇编,共28页。试卷主要包含了单选题,多选题,填空题,解答题,双空题等内容,欢迎下载使用。
这是一份21-平面解析几何(圆锥曲线之椭圆)-五年(2018-2022)高考数学真题按知识点分类汇编,共46页。试卷主要包含了单选题,多选题,填空题,解答题,双空题等内容,欢迎下载使用。
这是一份19-平面解析几何(直线与方程)-五年(2018-2022)高考数学真题按知识点分类汇编,共22页。试卷主要包含了单选题,多选题,填空题,解答题,双空题等内容,欢迎下载使用。