- 2022年高考北京卷语文试题与答案详细解析 试卷 6 次下载
- 2022年新高考北京卷英语真题与答案详细解析 试卷 4 次下载
- 2022年新高考北京物理高考真题与答案详细解析 试卷 5 次下载
- 2022年北京市高考真题化学试题与答案详细解析 试卷 2 次下载
- 2022年新高考北京生物高考真题与答案详细解析 试卷 5 次下载
2022年新高考北京数学高考真题与答案详细解析
展开绝密★本科目考试启用前
2022年普通高等学校招生全国统一考试(北京卷)
数学
本试卷共5页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效.考试结束后,将本试卷和答题卡一并交回.
第一部分(选择题 共40分)
一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.
1. 已知全集,集合,则( )
A. B. C. D.
【答案】D
【解析】
【分析】利用补集的定义可得正确的选项.
【详解】由补集定义可知:或,即,
故选:D.
2 若复数z满足,则( )
A. 1 B. 5 C. 7 D. 25
【答案】B
【解析】
【分析】利用复数四则运算,先求出,再计算复数的模.
【详解】由题意有,故.
故选:B.
3. 若直线是圆的一条对称轴,则( )
A. B. C. 1 D.
【答案】A
【解析】
【分析】若直线是圆的对称轴,则直线过圆心,将圆心代入直线计算求解.
【详解】由题可知圆心为,因为直线是圆的对称轴,所以圆心在直线上,即,解得.
故选:A.
4. 已知函数,则对任意实数x,有( )
A. B.
C. D.
【答案】C
【解析】
【分析】直接代入计算,注意通分不要计算错误.
【详解】,故A错误,C正确;
,不是常数,故BD错误;
故选:C.
5. 已知函数,则( )
A. 在上单调递减 B. 在上单调递增
C. 在上单调递减 D. 在上单调递增
【答案】C
【解析】
【分析】化简得出,利用余弦型函数的单调性逐项判断可得出合适的选项.
【详解】因为.
对于A选项,当时,,则在上单调递增,A错;
对于B选项,当时,,则在上不单调,B错;
对于C选项,当时,,则在上单调递减,C对;
对于D选项,当时,,则在上不单调,D错.
故选:C.
6. 设是公差不为0的无穷等差数列,则“为递增数列”是“存在正整数,当时,”的( )
A. 充分而不必要条件 B. 必要而不充分条件
C. 充分必要条件 D. 既不充分也不必要条件
【答案】C
【解析】
【分析】设等差数列的公差为,则,利用等差数列的通项公式结合充分条件、必要条件的定义判断可得出结论.
【详解】设等差数列的公差为,则,记为不超过的最大整数.
若为单调递增数列,则,
若,则当时,;若,则,
由可得,取,则当时,,
所以,“是递增数列”“存在正整数,当时,”;
若存在正整数,当时,,取且,,
假设,令可得,且,
当时,,与题设矛盾,假设不成立,则,即数列是递增数列.
所以,“是递增数列”“存在正整数,当时,”.
所以,“是递增数列”是“存在正整数,当时,”的充分必要条件.
故选:C.
7. 在北京冬奥会上,国家速滑馆“冰丝带”使用高效环保的二氧化碳跨临界直冷制冰技术,为实现绿色冬奥作出了贡献.如图描述了一定条件下二氧化碳所处的状态与T和的关系,其中T表示温度,单位是K;P表示压强,单位是.下列结论中正确的是( )
A. 当,时,二氧化碳处于液态
B. 当,时,二氧化碳处于气态
C. 当,时,二氧化碳处于超临界状态
D. 当,时,二氧化碳处于超临界状态
【答案】D
【解析】
【分析】根据与的关系图可得正确的选项.
【详解】当,时,,此时二氧化碳处于固态,故A错误.
当,时,,此时二氧化碳处于液态,故B错误.
当,时,与4非常接近,故此时二氧化碳处于固态,对应的是非超临界状态,故C错误.
当,时,因, 故此时二氧化碳处于超临界状态,故D正确.
故选:D
8. 若,则( )
A. 40 B. 41 C. D.
【答案】B
【解析】
【分析】利用赋值法可求的值.
【详解】令,则,
令,则,
故,
故选:B.
9. 已知正三棱锥的六条棱长均为6,S是及其内部的点构成的集合.设集合,则T表示的区域的面积为( )
A. B. C. D.
【答案】B
【解析】
【分析】求出以为球心,5为半径的球与底面的截面圆的半径后可求区域的面积.
【详解】
设顶点在底面上的投影为,连接,则为三角形的中心,
且,故.
因为,故,
故的轨迹为以为圆心,1为半径的圆,
而三角形内切圆的圆心为,半径为,
故的轨迹圆在三角形内部,故其面积为
故选:B
10. 在中,.P为所在平面内的动点,且,则的取值范围是( )
A. B. C. D.
【答案】D
【解析】
【分析】依题意建立平面直角坐标系,设,表示出,,根据数量积的坐标表示、辅助角公式及正弦函数的性质计算可得;
【详解】解:依题意如图建立平面直角坐标系,则,,,
因为,所以在以为圆心,为半径的圆上运动,
设,,
所以,,
所以
,其中,,
因为,所以,即;
故选:D
第二部分(非选择题 共110分)
二、填空题共5小题,每小题5分,共25分.
11. 函数的定义域是_________.
【答案】
【解析】
【分析】根据偶次方根的被开方数非负、分母不为零得到方程组,解得即可;
【详解】解:因为,所以,解得且,
故函数的定义域为;
故答案为:
12. 已知双曲线的渐近线方程为,则__________.
【答案】
【解析】
【分析】首先可得,即可得到双曲线标准方程,从而得到、,再跟渐近线方程得到方程,解得即可;
【详解】解:对于双曲线,所以,即双曲线标准方程为,
则,,又双曲线的渐近线方程为,
所以,即,解得;
故答案为:
13. 若函数的一个零点为,则________;________.
【答案】 ①. 1 ②.
【解析】
【分析】先代入零点,求得A的值,再将函数化简为,代入自变量,计算即可.
【详解】∵,∴
∴
故答案为:1,
14. 设函数若存在最小值,则a的一个取值为________;a的最大值为___________.
【答案】 ①. 0(答案不唯一) ②. 1
【解析】
【分析】根据分段函数中的函数的单调性进行分类讨论,可知,符合条件,不符合条件,时函数没有最小值,故的最小值只能取的最小值,根据定义域讨论可知或, 解得 .
【详解】解:若时,,∴;
若时,当时,单调递增,当时,,故没有最小值,不符合题目要求;
若时,
当时,单调递减,,
当时,
∴或,
解得,
综上可得;
故答案为:0(答案不唯一),1
15. 已知数列各项均为正数,其前n项和满足.给出下列四个结论:
①的第2项小于3; ②为等比数列;
③为递减数列; ④中存在小于的项.
其中所有正确结论的序号是__________.
【答案】①③④
【解析】
【分析】推导出,求出、的值,可判断①;利用反证法可判断②④;利用数列单调性的定义可判断③.
【详解】由题意可知,,,
当时,,可得;
当时,由可得,两式作差可得,
所以,,则,整理可得,
因为,解得,①对;
假设数列为等比数列,设其公比为,则,即,
所以,,可得,解得,不合乎题意,
故数列不是等比数列,②错;
当时,,可得,所以,数列为递减数列,③对;
假设对任意的,,则,
所以,,与假设矛盾,假设不成立,④对.
故答案为:①③④.
【点睛】关键点点睛:本题在推断②④的正误时,利用正面推理较为复杂时,可采用反证法来进行推导.
三、解答题共6小愿,共85分.解答应写出文字说明,演算步骤或证明过程.
16. 在中,.
(1)求;
(2)若,且的面积为,求的周长.
【答案】(1)
(2)
【解析】
【分析】(1)利用二倍角的正弦公式化简可得的值,结合角的取值范围可求得角的值;
(2)利用三角形的面积公式可求得的值,由余弦定理可求得的值,即可求得的周长.
【小问1详解】
解:因为,则,由已知可得,
可得,因此,.
【小问2详解】
解:由三角形的面积公式可得,解得.
由余弦定理可得,,
所以,的周长为.
17. 如图,在三棱柱中,侧面为正方形,平面平面,,M,N分别为,AC的中点.
(1)求证:平面;
(2)再从条件①、条件②这两个条件中选择一个作为已知,求直线AB与平面BMN所成角的正弦值.
条件①:;
条件②:.
注:如果选择条件①和条件②分别解答,按第一个解答计分.
【答案】(1)见解析 (2)见解析
【解析】
【分析】(1)取中点为,连接,可证平面平面,从而可证平面.
(2)选①②均可证明平面,从而可建立如图所示的空间直角坐标系,利用空间向量可求线面角的正弦值.
【小问1详解】
取的中点为,连接,
由三棱柱可得四边形为平行四边形,
而,则,
而平面,平面,故平面,
而,则,同理可得平面,
而平面,
故平面平面,而平面,故平面,
【小问2详解】
因为侧面为正方形,故,
而平面,平面平面,
平面平面,故平面,
因为,故平面,
因为平面,故,
若选①,则,而,,
故平面,而平面,故,
所以,而,,故平面,
故可建立如所示的空间直角坐标系,则,
故,
设平面的法向量为,
则,从而,取,则,
设直线与平面所成的角为,则
.
若选②,因为,故平面,而平面,
故,而,故,
而,,故,
所以,故,
而,,故平面,
故可建立如所示的空间直角坐标系,则,
故,
设平面的法向量为,
则,从而,取,则,
设直线与平面所成的角为,则
.
18. 在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到以上(含)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m):
甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,9.35,9.30,9.25;
乙:9.78,9.56,9.51,9.36,9.32,9.23;
丙:9.85,9.65,9.20,9.16.
假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.
(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;
(2)设X是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X的数学期望E(X);
(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)
【答案】(1)0.4 (2)
(3)丙
【解析】
【分析】(1) 由频率估计概率即可
(2) 求解得X的分布列,即可计算出X的数学期望.
(3) 计算出各自获得最高成绩的概率,再根据其各自的最高成绩可判断丙夺冠的概率估计值最大.
【小问1详解】
由频率估计概率可得
甲获得优秀的概率为0.4,乙获得优秀的概率为0.5,丙获得优秀的概率为0.5,
故答案为0.4
【小问2详解】
设甲获得优秀为事件A1,乙获得优秀为事件A2,丙获得优秀为事件A3
,
,
,
.
∴X的分布列为
X | 0 | 1 | 2 | 3 |
P |
∴
【小问3详解】
丙夺冠概率估计值最大.
因为铅球比赛无论比赛几次就取最高成绩.比赛一次,丙获得9.85的概率为,甲获得9.80的概率为,乙获得9.78的概率为.并且丙的最高成绩是所有成绩中最高的,比赛次数越多,对丙越有利.
19. 已知椭圆:的一个顶点为,焦距为.
(1)求椭圆E的方程;
(2)过点作斜率为k的直线与椭圆E交于不同的两点B,C,直线AB,AC分别与x轴交于点M,N,当时,求k的值.
【答案】(1)
(2)
【解析】
【分析】(1)依题意可得,即可求出,从而求出椭圆方程;
(2)首先表示出直线方程,设、,联立直线与椭圆方程,消元列出韦达定理,由直线、的方程,表示出、,根据得到方程,解得即可;
【小问1详解】
解:依题意可得,,又,
所以,所以椭圆方程为;
【小问2详解】
解:依题意过点的直线为,设、,不妨令,
由,消去整理得,
所以,解得,
所以,,
直线的方程为,令,解得,
直线的方程为,令,解得,
所以
,
所以,
即
即
即
整理得,解得
20. 已知函数.
(1)求曲线在点处的切线方程;
(2)设,讨论函数在上的单调性;
(3)证明:对任意的,有.
【答案】(1)
(2)在上单调递增.
(3)证明见解析
【解析】
【分析】(1)先求出切点坐标,由导数求得切线斜率,即得切线方程;
(2)在求一次导数无法判断的情况下,构造新的函数,再求一次导数,问题即得解;
(3)令,,即证,由第二问结论可知在[0,+∞)上单调递增,即得证.
【小问1详解】
解:因为,所以,
即切点坐标为,
又,
∴切线斜率
∴切线方程为:
【小问2详解】
解:因为,
所以,
令,
则,
∴在上单调递增,
∴
∴在上恒成立,
∴在上单调递增.
【小问3详解】
解:原不等式等价于,
令,,
即证,
∵,
,
由(2)知在上单调递增,
∴,
∴
∴在上单调递增,又因为,
∴,所以命题得证.
21. 已知为有穷整数数列.给定正整数m,若对任意的,在Q中存在,使得,则称Q为连续可表数列.
(1)判断是否为连续可表数列?是否为连续可表数列?说明理由;
(2)若为连续可表数列,求证:k的最小值为4;
(3)若为连续可表数列,且,求证:.
【答案】(1)是连续可表数列;不是连续可表数列.
(2)证明见解析. (3)证明见解析.
【解析】
【分析】(1)直接利用定义验证即可;
(2)先考虑不符合,再列举一个合题即可;
(3)时,根据和的个数易得显然不行,再讨论时,由可知里面必然有负数,再确定负数只能是,然后分类讨论验证不行即可.
【小问1详解】
,,,,,所以是连续可表数列;易知,不存在使得,所以不是连续可表数列.
【小问2详解】
若,设为,则至多,6个数字,没有个,矛盾;
当时,数列,满足,,,,,,,, .
【小问3详解】
,若最多有种,若,最多有种,所以最多有种,
若,则至多可表个数,矛盾,
从而若,则,至多可表个数,
而,所以其中有负的,从而可表1~20及那个负数(恰 21个),这表明中仅一个负的,没有0,且这个负的在中绝对值最小,同时中没有两数相同,设那个负数为 ,
则所有数之和,,
,再考虑排序,排序中不能有和相同,否则不足个,
(仅一种方式),
与2相邻,
若不在两端,则形式,
若,则(有2种结果相同,方式矛盾),
, 同理 ,故在一端,不妨为形式,
若,则 (有2种结果相同,矛盾),同理不行,
,则 (有2种结果相同,矛盾),从而,
由于,由表法唯一知3,4不相邻,、
故只能,①或,②
这2种情形,
对①:,矛盾,
对②:,也矛盾,综上,
当时,数列满足题意,
.
【点睛】关键点睛,先理解题意,是否为可表数列核心就是是否存在连续的几项(可以是一项)之和能表示从到中间的任意一个值.本题第二问时,通过和值可能个数否定;第三问先通过和值的可能个数否定,再验证时,数列中的几项如果符合必然是的一个排序,可验证这组数不合题.
2023年上海高考数学真题试卷+详细答案: 这是一份2023年上海高考数学真题试卷+详细答案,共15页。
2022年北京高考数学真题试卷+答案解析: 这是一份2022年北京高考数学真题试卷+答案解析,共19页。
2015高考真题详细解析及考点透析: 这是一份2015高考真题详细解析及考点透析,共67页。试卷主要包含了下列叙述错误的是,关于人胰岛素的叙述,正确的是,关于蛋白质的叙述,错误的是等内容,欢迎下载使用。