|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年上海市崇明区高二上学期期末数学试题(解析版)
    立即下载
    加入资料篮
    2021-2022学年上海市崇明区高二上学期期末数学试题(解析版)01
    2021-2022学年上海市崇明区高二上学期期末数学试题(解析版)02
    2021-2022学年上海市崇明区高二上学期期末数学试题(解析版)03
    还剩12页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年上海市崇明区高二上学期期末数学试题(解析版)

    展开
    这是一份2021-2022学年上海市崇明区高二上学期期末数学试题(解析版),共15页。试卷主要包含了填空题,单选题,解答题等内容,欢迎下载使用。

    2021-2022学年上海市崇明区高二上学期期末数学试题

     

    一、填空题

    1.已知球的半径等于1,则该球的体积等于______.

    【答案】##

    【分析】由球体体积公式直接求解.

    【详解】由球的体积公式.

    故答案为:

    2.计算:______i为虚数单位).

    【答案】##

    【分析】根据复数四则运算即可得出结果

    【详解】由题意得.

    故答案为:

    3.某药物公司实验一种降低胆固醇的新药,在500个病人中进行实验,结果如下表所示.

    胆固醇降低的人数

    没有起作用的人数

    胆固醇升高的人数

    307

    120

    73

     

    则使用药物后胆固醇降低的经验概率等于______.

    【答案】##0.614

     

     

    【分析】根据经验概率的定义可求出结果.

    【详解】依题意使用药物后胆固醇降低的人数为,又试验总次数为

    所以使用药物后胆固醇降低的经验概率等于.

    故答案为:

    4.已知复数,则z的共轭复数______.

    【答案】##

    【分析】利用向量的摸公式及共轭复数的概念即可求解.

    【详解】,所以.

    故答案为:.

    5.已知点和点,若向量对应的复数是,则点对应的复数______.

    【答案】

    【分析】根据复数的几何意义计算即可.

    【详解】由题知,,

    所以

    所以点对应的复数.

    故答案为:.

    6.已知向量分别是直线和平面的方向向量和法向量,若,则所成角的大小是______.

    【答案】##

    【分析】若直线与平面所成角为,则直线方向向量与平面法向量的夹角为,由此计算即可.

    【详解】设直线与平面所成角为),

    则直线的方向向量与平面的法向量的夹角为

    由题意,

    所成角的大小是.

    故答案为:.

    7.已知矩形中,,以为旋转轴,将矩形旋转一周所形成的空间封闭几何体的表面积等于______.

    【答案】

    【分析】由旋转体定义可知所得几何体为圆柱,根据圆柱表面积求法可求得结果.

    【详解】由旋转体定义可知:所形成的空间封闭几何体为底面半径,母线长的圆柱,

    该几何体的表面积.

    故答案为:.

    8.同时投掷两颗均匀的骰子,所得点数相等的概率为______

    【答案】

    【分析】应用列表法求点数相等的概率即可.

    【详解】同时投掷两颗均匀的骰子,所得点数组合如下表:

     

    1

    2

    3

    4

    5

    6

    1

    (1,1)

    (2,1)

    (3,1)

    (4,1)

    (5,1)

    (6,1)

    2

    (1,2)

    (2,2)

    (3,2)

    (4,2)

    (5,2)

    (6,2)

    3

    (1,3)

    (2,3)

    (3,3)

    (4,3)

    (5,3)

    (6,3)

    4

    (1,4)

    (2,4)

    (3,4)

    (4,4)

    (5,4)

    (6,4)

    5

    (1,5)

    (2,5)

    (3,5)

    (4,5)

    (5,5)

    (6,5)

    6

    (1,6)

    (2,6)

    (3,6)

    (4,6)

    (5,6)

    (6,6)

     

    由上表知:所有可能组合有36种,其中点数相等有6种,

    所以所得点数相等的概率为.

    故答案为:

    9.盒子中有散落的黑白棋子若干粒,已知从中取出粒都是黑子的概率是,从中取出粒都是白子的概率是,则从中任意取出粒恰好是一粒黑子一粒白子的概率是______.

    【答案】

    【分析】任意取出粒棋子,一共有粒都是黑子、粒都是白子和一粒黑子一粒白子种可能,其概率之和为,由此求解即可.

    【详解】由题意,任意取出粒棋子,不考虑先后顺序,一共有粒都是黑子、粒都是白子和一粒黑子一粒白子种可能,

    设事件:取出粒都是黑子,事件:取出粒都是白子,事件:取出粒恰好是一粒黑子一粒白子,则两两互斥,

    由已知有

    从中任意取出粒恰好是一粒黑子一粒白子的概率是.

    故答案为:.

    10.已知四面体中,分别为的中点,且异面直线所成的角为,则____.

    【答案】1

    【分析】BD中点O,连结EOFO,推导出EOFO1,或,由此能求出EF

    【详解】BD中点O,连结EOFO

    四面体ABCD中,ABCD2EF分别为BCAD的中点,且异面直线ABCD所成的角为

    ∴EO∥CD,且EOFO∥AB,且FO1

    ∴∠EOF是异面直线ABCD所成的角或其补角,

    ,或

    ∠EOF时,△EOF是等边三角形,∴EF1

    时,EF

    故答案为1

    【点睛】本题考查异面直线所成角的应用,注意做平行线找到角是关键,解题时要认真审题,注意空间思维能力的培养,是易错题

    11.如图,已知圆锥的顶点为P,底面圆心为OAB是底面圆周上两点,C为线段PB的中点.一只蚂蚁沿着圆锥表面从点A爬到点C经过的最短距离是______.

    【答案】

    【分析】将圆锥的侧面沿母线展开成扇形,判断出最短距离是线段,利用余弦定理解三角形即可求解.

    【详解】将圆锥的侧面沿母线展开成扇形,如图示:

    所以一只蚂蚁沿着圆锥表面从点A爬到点C经过的最短距离是线段.

    则弧长为

    所以,因为,所以

    所以在扇形中,,又C为线段PB的中点,.

    所以在中,,,,由余弦定理得:

    所以一只蚂蚁沿着圆锥表面从点A爬到点C经过的最短距离是.

    故答案为:

    12.有两个相同的直三棱柱,高为,底面三角形的三边长分别为).用它们拼成一个三棱柱或四棱柱,在所有可能的情况中,全面积最小的是一个四棱柱,则的取值范围是_______

    【答案】

    【分析】由题意拼成一个三棱柱,3种情况求出表面积;拼成一个四棱柱,3种情况分别求出表面积,然后求出a的范围.

    【详解】拼成一个三棱柱时,有三种情况:

    将上下底面对接,其全面积为:

    3a边可以合在一起时,

    4a边合在一起时, .

    拼成一个四棱柱,有三种情况:就是分别让边长为3a,4a,5a所在的侧面重合,其上下底面积之和都是,但侧面积分别为:, ,

    显然,三个是四棱柱中全面积最小的值为: .

    由题意得:,解得:.

    故答案为 :

    【点睛】1)求解以由多个几何体构成组合体的体积的关键是确定组合体的形状以及组合体图中线面的位置关系和数量关系,利用相应体积公式求解;

    2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.

     

    二、单选题

    13.若是关于的实系数方程的一个复数根,则(    

    A B

    C D

    【答案】D

    【分析】代入方程,整理后由复数相等的定义列方程组求解.

    【详解】由题意1i是关于的实系数方程

    ,即

    ,解得.

    故选:D

    14.将一枚质地均匀的硬币连续抛掷100次,第99次抛掷出现反面的概率是(    

    A B C D

    【答案】D

    【分析】根据随机事件每次发生的概率是相等的,即可得出第99次抛掷出现反面的概率.

    【详解】将一枚质地均匀的硬币抛掷一次,出现正面,还是反面,是随机事件,且是等可能的,

    无论抛多少次,每一次抛掷出现反面的概率都为.

    99次抛掷出现反面的概率是.

    故选:D.

    15.在棱长为的正方体中,P为左侧面上一点,已知点P的距离为P的距离为,则过点P且与平行的直线相交的面是(    

    AABCD B C D

    【答案】A

    【分析】由图可知点内,过,且,在平面中,过,由平面与平面平行的判定可得平面平面;连接,交,连接,再由平面与平面平行的性质得,在中,过,且,可得,由此说明过点且与平行的直线相交的面是平面.

    【详解】如图,

    由点的距离为的距离为2,可得内,

    ,且

    平面平面,所以平面

    在平面中,过

    平面平面,所以平面

    因为平面,则平面平面

    连接,交,连接

    则由平面平面

    平面平面,平面平面,则

    中,过,且,则

    线段在四边形内,在线段上,在四边形内.

    所以过点P且与平行的直线相交的面是平面

    故选:A

    16.已知正四棱柱中,底面边长是长方体表面上一点,则的取值范围是(    

    A B C D

    【答案】B

    【分析】中点,将所求数量积转化为,根据的取值范围可求得结果.

    【详解】中点

    为侧面中点时,的最大值为体对角线的一半

    的取值范围为.

    故选:B.

    【点睛】关键点点睛:本题考查立体几何中的向量数量积问题的求解,解题关键是通过转化法将问题转化为向量模长最值的求解问题,进而通过确定向量模长的最值来确定数量积的取值范围.

     

    三、解答题

    17.求实数m的值或取值范围,使得复数分别满足:

    (1)z是实数;

    (2)z是纯虚数;

    (3)z是复平面中对应的点位于第二象限.

    【答案】(1)

    (2)

    (3)

     

    【分析】1)根据复数的概念列式可求出结果;

    2)根据复数的概念列式可求出结果;

    3)根据复数的几何意义可求出结果.

    【详解】1)由题意得,所以

    2)由题意得,所以

    3)由题意得,所以.

    18.在直三棱柱中,.

    (1)求四棱锥的体积V

    (2)求直线与平面所成角的大小;

    (3)求异面直线所成角的大小.

    【答案】(1)

    (2)

    (3)

     

    【分析】1)根据线面垂直的判定与性质可得平面,进而根据锥体体积公式求解即可;

    2)根据线面角的性质可得即为直线与平面所成的角,再在直角三角形中求出即可;

    3)根据线线角的定义可得就是异面直线所成的角(或其补角),再根据余弦定理求解即可.

    【详解】1)因为是直棱柱,所以平面

    平面,得

    又因为,且平面,所以平面.

    所以三棱锥的体积

    .

    2)因为,所以        

    因为是直棱柱,所以平面

    平面,进而,所以平面          

    所以即为直线与平面所成的角.  

    中,

    所以

    所以直线与平面所成角的大小是.

    3)因为

    所以就是异面直线所成的角(或其补角)

    中,

    所以

    所以异面直线所成的角大小是.

    19

    命中环数

    10

    9

    8

    7

        

    0.32

    0.28

    0.18

    0.12

     

    求:

    (1)该选手射击一次,命中不足9环的概率;

    (2)该选手射击两次(两次结果互不影响),一次命中10环,一次命中8环的概率;

    (3)该选手射击两次(两次结果互不影响),两次命中之和不低于18环的概率.

    【答案】(1)

    (2)

    (3)

     

    【分析】(1) 表示该选手射击一次命中环数为的概率,利用计算即可;

    (2)第一次命中10环,第二次命中8,或者第一次命中8环,第二次命中10,再根据互斥事件的概率计算公式计算即可;

    (3)要使两次命中之和不低于18环,则包含两次命中的环数为:1010109910991088106种情况,再根据互斥事件的概率公式计算即可.

    【详解】1)解:用表示该选手射击一次命中环数为的概率(

    则该选手射击一次,命中不足9环的概率为:;

    2)解:该选手射击两次(两次结果互不影响),一次命中10环,一次命中8环,

    分为两种情形:第一次命中10环,第二次命中8,或者第一次命中8环,第二次命中10,将上述事件分别记作事件A和事件B,则AB互斥,

    又事件A第一次命中10第二次命中8相互独立,

    所以,同理.

    所以该选手射击两次(两次结果互不影响),一次命中10环,一次命中8环的概率是

    3)解:该选手射击两次(两次结果互不影响),两次命中之和不低于18环的概率

    .

    20.如图,在棱长为2的正方体中,点E是棱AB上的动点.

    (1)求证:

    (2)FG分别是BCCD的中点,求二面角的大小.

    【答案】(1)证明见解析

    (2)

     

    【分析】(1)建立空间坐标系,利用向量垂直的定义即可判断;(2)先分别求出两个面的法向量,求出向量角大小,观察图像,得出空间角与向量角的关系.

    【详解】1)如图,以为坐标原点,以射线分别为轴、

    轴、轴的正半轴,建立空间直角坐标系.

    ,则

    .  

    2)易得,,

    设平面的法向量为

    ,即

    ,解得

    从而平面的一个法向量为.

    平面的一个法向量为

    从而.

    经观察,二面角为钝角,

    所以二面角的大小是.

    21.如图,已知是正三角形,直角梯形ACDE所在平面垂直于平面ABC,且FBE的中点.

    (1)求证:平面ABC

    (2)求证:平面平面BDE.

    【答案】(1)证明见解析

    (2)证明见解析

     

    【分析】1)由题意可知,取中点构建平行四边形,利用线面平行的判定定理即可证明;(2)由面面垂直的性质定理可得平面,即可得,再根据以及勾股定理,即可证明平面,再根据面面垂直的判定定理便可得出证明.

    【详解】1)取中点,连接,如图所示;

    .

    因为,所以

    ,所以四边形是平行四边形,于是.

    因为平面平面

    所以平面.

    2)因为直角梯形所在平面垂直于平面

    所以平面,所以

    因为,所以.

    因为的中点,所以,且.

    是正三角形,

    所以

    所以,从而  

    平面平面,且

    所以平面.  

    因为平面

    所以平面平面.

     

    相关试卷

    上海市崇明区2022-2023学年高一上学期期末数学试题: 这是一份上海市崇明区2022-2023学年高一上学期期末数学试题,共10页。试卷主要包含了填空题,选择题,解答题等内容,欢迎下载使用。

    上海市崇明区2022-2023学年高一上学期期末数学试题: 这是一份上海市崇明区2022-2023学年高一上学期期末数学试题,共10页。试卷主要包含了填空题,选择题,解答题等内容,欢迎下载使用。

    上海市崇明区2022-2023学年高一上学期期末数学试题: 这是一份上海市崇明区2022-2023学年高一上学期期末数学试题,共10页。试卷主要包含了填空题,选择题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map