还剩6页未读,
继续阅读
所属成套资源:北师大版数学八年级下册课时练习 (含答案)
成套系列资料,整套一键下载
北师大版八年级下册第六章 平行四边形3 三角形的中位线精品课堂检测
展开这是一份北师大版八年级下册第六章 平行四边形3 三角形的中位线精品课堂检测,共9页。试卷主要包含了3《三角形的中位线》等内容,欢迎下载使用。
一、选择题
1.如图,在△ABC中,点D,E分别是边AB,BC的中点,若△DBE的周长是6,则△ABC的周长是( )
A.8 B.10 C.12 D.14
2.如图,在△ABC中,AB=5,BC=6,AC=7,点D,E,F分别是△ABC三边的中点,则△DEF周长为( )
A.9 B.10 C.11 D.12
3.如图,在△ABC中,AB=6,AC=10,点D,E,F分别是AB,BC,AC的中点,则四边形ADEF的周长为( )
A.8 B.10 C.12 D.16
4.如图,□ABCD中,AB=10,BC=6,E、F分别是AD、DC的中点,若EF=7,则四边形EACF的周长是( )
A.20 B.22 C.29 D.31
5.如图,▱ABCD中,对角线AC、BD交于点O,点E是BC的中点.若OE=3cm,则AB的长为( )
A.3 cm B.6 cm C.9 cm D.12 cm
6.如图,△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为( )
A.eq \f(1,2) B.1 C.1.5 D.eq \f(1,4)
7.如图, D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E 、F 、G 、H 分别是 AB、AC、CD、BD 的中点,则四边形 EFGH 的周长是( )
A.7 B.8 C.11 D.10
8.如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点E作垂线交BC于点F,已知BC=10,△ABD的面积为12,则EF的长为( )
A.4.8 B.3.6 C.2.4 D.1.2
二、填空题
9.如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD= .
10.如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24cm,△OAB的周长是18cm,则EF=______cm.
11.如图,▱ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE的周长为______.
12.如图所示,小明为了测量学校里一池塘的宽度AB,选取可以直达A、B两点的点O处,再分别取OA、OB的中点M、N,量得MN=20m,则池塘的宽度AB为 m.
13.如图,已知M是△ABC的边BC的中点,AN平分∠BAD,BN⊥AN于点N,且AB=10,BC=15,MN=3,则△ABC的周长等于 .
14.如图,已知在△ABC中,点A1,B1,C1分别是BC、AC、AB的中点,A2,B2,C2分别是B1C1,A1C1,A1B1的中点,依此类推….若△ABC的周长为1,则△AnBnCn的周长为______.
三、解答题
15.如图,平行四边形ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24,△OAB的周长是18,试求EF的长.
16.在△ABC中,中线BE、CF相交于O,M是BO的中点,N是CO的中点.
求证:四边形MNEF是平行四边形.
17.如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.
(1)求证:△ADE≌△BFE;
(2)连接EG,判断EG与DF的位置关系并说明理由.
18.如图,已知E为▱ABCD中DC边的延长线上的一点,且CE=DC,连结AE分别交BC、BD于点F、G,连结AC交BD于O,连结OF.求证:AB=2OF.
19.如图,已知在四边形ABCD中,AD=BC,E、F分别是DC、AB边的中点,FE的延长线分别与AD、BC的延长线交于H、G点.求证:∠AHF=∠BGF.
20.(1)如图①,已知BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别是F、G,连结FG,延长AF、AG,与直线BC相交.求证:AB+BC+AC=2FG.
(2)若BD、CE分别是△ABC的内角平分线,其余条件不变(如图②),线段FG与△ABC的三边又有怎样的数量关系?写出你的猜想,并给予证明.
参考答案
1.C.
2.A
3.D.
4.C.
5.B.
6.A.
7.C.
8.C
9.答案为:2.
10.答案为:3.
11.答案为:15.
12.答案为:40.
13.答案为:41
14.答案为:(eq \f(1,2))n
15.解:∵四边形ABCD是平行四边形
∴AO=CO,BO=DO,
∵AC+BD=24,
∴AO+BO=12,
∵△OAB的周长是18,
∴AB=18﹣(AO+BO)=18﹣12=6,
∵点E,F分别是线段AO,BO的中点
∴EF=3.
16.证明:∵BE,CF是△ABC的中线,
∴EF∥BC且EF=eq \f(1,2)BC,
∵M是BO的中点,N是CO的中点,
∴MN∥BC且MN=eq \f(1,2)BC,
∴EF∥MN且EF=MN,
∴四边形MNEF是平行四边形.
17.证明:(1)∵AD∥BC,
∴∠ADE=∠BFE,
∵E为AB的中点,
∴AE=BE,
在△AED和△BFE中,
∴△AED≌△BFE(AAS);
(2)EG与DF的位置关系是EG垂直平分DF,理由为:连接EG,
∵∠GDF=∠ADE,∠ADE=∠BFE,
∴∠GDF=∠BFE,
由(1)△AED≌△BFE得:DE=EF,
即GE为DF上的中线,
∴GE垂直平分DF.
18.证明:∵四边形ABCD是平行四边形,
∴AB=CD,OA=OC.
∴∠BAF=∠CEF,∠ABF=∠ECF.
∵CE=DC,
在平行四边形ABCD中,CD=AB,
∴AB=CE.
∴在△ABF和△ECF中,
∠BAF=∠CEF,AB=CE,∠ABF=∠BCF
∴△ABF≌△ECF(ASA),
∴BF=CF.
∵OA=OC,
∴OF是△ABC的中位线,
∴AB=2OF.
19.证明:连接AC,作EM∥AD交AC于M,连接MF.如下图:
∵E是CD的中点,且EM∥AD,
∴EM=eq \f(1,2)AD,
M是AC的中点,又因为F是AB的中点
∴MF∥BC,且MF=eq \f(1,2)BC.
∵AD=BC,
∴EM=MF,三角形MEF为等腰三角形,即∠MEF=∠MFE.
∵EM∥AH,
∴∠MEF=∠AHF
∵FM∥BG,
∴∠MFE=∠BGF
∴∠AHF=∠BGF.
20.解:(1)如图1,∵AF⊥BD,∠ABF=∠MBF,
∴∠BAF=∠BMF,
在△ABF和△MBF中,
∵,
∴△ABF≌△MBF(ASA)
∴MB=AB
∴AF=MF,
同理:CN=AC,AG=NG,
∴FG是△AMN的中位线
∴FG=eq \f(1,2)MN,
=eq \f(1,2)(MB+BC+CN),
=eq \f(1,2)(AB+BC+AC).
(2)延长AG交BC于N,延长AF交BC于M
∵AF⊥BD,AG⊥CE,
∴∠AGC=∠CGN=90°,∠AFB=∠BFM=90°
在Rt△AGC和Rt△CGN中
∠AGC=∠CGN=90°,CG=CG,∠ACG=∠NCG
∴△AGC≌Rt△NGC
∴AC=CN,AG=NG
同理可证:AF=FM,AB=BM.
∴GF是△AMN的中位线
∴GF=eq \f(1,2)MN.
∵AB+AC=MB+CN=BN+MN+CM+MN,BC=BN+MN+CM
∴AB+AC-BC=MN
∴GF=eq \f(1,2)MN=eq \f(1,2)(AB+AC-BC);
相关试卷
初中数学北师大版八年级下册3 三角形的中位线课时训练:
这是一份初中数学北师大版八年级下册3 三角形的中位线课时训练,共8页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
北师大版八年级下册3 三角形的中位线同步训练题:
这是一份北师大版八年级下册3 三角形的中位线同步训练题,共21页。试卷主要包含了一个三角形必有三条中位线,一个三角形必有三条中线等内容,欢迎下载使用。
初中数学北师大版八年级下册3 三角形的中位线精品随堂练习题:
这是一份初中数学北师大版八年级下册3 三角形的中位线精品随堂练习题,共8页。试卷主要包含了3《三角形的中位线》课时练习等内容,欢迎下载使用。