|试卷下载
终身会员
搜索
    上传资料 赚现金
    五年2018-2022高考化学真题按知识点分类汇编44-化学能与电能-原电池原理及应用(含解析)
    立即下载
    加入资料篮
    五年2018-2022高考化学真题按知识点分类汇编44-化学能与电能-原电池原理及应用(含解析)01
    五年2018-2022高考化学真题按知识点分类汇编44-化学能与电能-原电池原理及应用(含解析)02
    五年2018-2022高考化学真题按知识点分类汇编44-化学能与电能-原电池原理及应用(含解析)03
    还剩35页未读, 继续阅读
    下载需要30学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    五年2018-2022高考化学真题按知识点分类汇编44-化学能与电能-原电池原理及应用(含解析)

    展开
    这是一份五年2018-2022高考化学真题按知识点分类汇编44-化学能与电能-原电池原理及应用(含解析),共38页。试卷主要包含了单选题,多选题,实验题,原理综合题等内容,欢迎下载使用。

    五年2018-2022高考化学真题按知识点分类汇编44-化学能与电能-原电池原理及应用(含解析)

    一、单选题
    1.(2022·全国·高考真题)一种水性电解液Zn-MnO2离子选择双隔膜电池如图所示(KOH溶液中,Zn2+以Zn(OH)存在)。电池放电时,下列叙述错误的是

    A.Ⅱ区的K+通过隔膜向Ⅲ区迁移
    B.Ⅰ区的SO通过隔膜向Ⅱ区迁移
    C. MnO2电极反应:MnO2+2e-+4H+=Mn2++2H2O
    D.电池总反应:Zn+4OH-+MnO2+4H+=Zn(OH)+Mn2++2H2O
    2.(2022·全国·统考高考真题)电池比能量高,在汽车、航天等领域具有良好的应用前景。近年来科学家研究了一种光照充电电池(如图所示)。光照时,光催化电极产生电子和空穴,驱动阴极反应和阳极反应(Li2O2+2h+=2Li++O2)对电池进行充电。下列叙述错误的是

    A.充电时,电池的总反应
    B.充电效率与光照产生的电子和空穴量有关
    C.放电时,Li+从正极穿过离子交换膜向负极迁移
    D.放电时,正极发生反应
    3.(2022·广东·高考真题)科学家基于易溶于的性质,发展了一种无需离子交换膜的新型氯流电池,可作储能设备(如图)。充电时电极a的反应为: 。下列说法正确的是

    A.充电时电极b是阴极
    B.放电时溶液的减小
    C.放电时溶液的浓度增大
    D.每生成,电极a质量理论上增加
    4.(2022·湖南·高考真题)海水电池在海洋能源领域备受关注,一种锂-海水电池构造示意图如下。下列说法错误的是

    A.海水起电解质溶液作用
    B.N极仅发生的电极反应:
    C.玻璃陶瓷具有传导离子和防水的功能
    D.该锂-海水电池属于一次电池
    5.(2022·浙江·统考高考真题)pH计是一种采用原电池原理测量溶液pH的仪器。如图所示,以玻璃电极(在特制玻璃薄膜球内放置已知浓度的HCl溶液,并插入Ag—AgCl电极)和另一Ag—AgCl电极插入待测溶液中组成电池,pH与电池的电动势E存在关系:pH=(E-常数)/0.059。下列说法正确的是

    A.如果玻璃薄膜球内电极的电势低,则该电极反应式为:AgCl(s)+e-=Ag(s)+Cl-(0.1mol·L-1)
    B.玻璃膜内外氢离子浓度的差异不会引起电动势的变化
    C.分别测定含已知pH的标准溶液和未知溶液的电池的电动势,可得出未知溶液的pH
    D.pH计工作时,电能转化为化学能
    6.(2022·辽宁·统考高考真题)某储能电池原理如图。下列说法正确的是

    A.放电时负极反应:
    B.放电时透过多孔活性炭电极向中迁移
    C.放电时每转移电子,理论上吸收
    D.充电过程中,溶液浓度增大
    7.(2022·北京·高考真题)已知:。下列说法不正确的是

    A.分子的共价键是键,分子的共价键是键
    B.燃烧生成的气体与空气中的水蒸气结合呈雾状
    C.停止反应后,用蘸有浓氨水的玻璃棒靠近集气瓶口产生白烟
    D.可通过原电池将与反应的化学能转化为电能
    8.(2021·河北·统考高考真题)K—O2电池结构如图,a和b为两个电极,其中之一为单质钾片。关于该电池,下列说法错误的是

    A.隔膜允许K+通过,不允许O2通过
    B.放电时,电流由b电极沿导线流向a电极;充电时,b电极为阳极
    C.产生1Ah电量时,生成KO2的质量与消耗O2的质量比值约为2.22
    D.用此电池为铅酸蓄电池充电,消耗3.9g钾时,铅酸蓄电池消耗0.9g水
    9.(2021·浙江·高考真题)某全固态薄膜锂离子电池截面结构如图所示,电极A为非晶硅薄膜,充电时得电子成为Li嵌入该薄膜材料中;电极B为薄膜;集流体起导电作用。下列说法不正确的是

    A.充电时,集流体A与外接电源的负极相连
    B.放电时,外电路通过电子时,薄膜电解质损失
    C.放电时,电极B为正极,反应可表示为
    D.电池总反应可表示为
    10.(2021·山东·统考高考真题)以KOH溶液为离子导体,分别组成CH3OH—O2、N2H4—O2、(CH3)2NNH2—O2清洁燃料电池,下列说法正确的是
    A.放电过程中,K+均向负极移动
    B.放电过程中,KOH物质的量均减小
    C.消耗等质量燃料,(CH3)2NNH2—O2燃料电池的理论放电量最大
    D.消耗1molO2时,理论上N2H4—O2燃料电池气体产物的体积在标准状况下为11.2L
    11.(2021·辽宁·统考高考真题)如图,某液态金属储能电池放电时产生金属化合物。下列说法正确的是

    A.放电时,M电极反应为
    B.放电时,由M电极向N电极移动
    C.充电时,M电极的质量减小
    D.充电时,N电极反应为
    12.(2021·广东·高考真题)火星大气中含有大量,一种有参加反应的新型全固态电池有望为火星探测器供电。该电池以金属钠为负极,碳纳米管为正极,放电时
    A.负极上发生还原反应 B.在正极上得电子
    C.阳离子由正极移向负极 D.将电能转化为化学能
    13.(2021·福建·统考高考真题)催化剂(Ⅱ)的应用,使电池的研究取得了新的进展。电池结构和该催化剂作用下正极反应可能的历程如下图所示。

    下列说法错误的是
    A.电池可使用有机电解液
    B.充电时,由正极向负极迁移
    C.放电时,正极反应为
    D.、、和C都是正极反应的中间产物
    14.(2021·福建·统考高考真题)利用下列装置和试剂进行实验,不能达到实验目的的是
    A
    B
    C
    D




    比较Zn与Cu的金属性强弱
    除去Cl2中的HCl并干燥
    制取乙酸乙酯(必要时可加沸石)
    实验室制取氯气

    A.A B.B C.C D.D
    15.(2021·重庆·统考高考真题)CO2电化学传感器是将环境中CO2浓度转变为电信号的装置,工作原理如图所示,其中YSZ是固体电解质,当传感器在一定温度下工作时,在熔融Li2CO3和YSZ之间的界面X会生成固体Li2O。下列说法错说的是

    A.CO迁移方向为界面X →电极b
    B.电极a上消耗的O2和电极b上产生的CO2的物质的量之比为1:1
    C.电极b为负极,发生的电极反应为2CO-4e-=O2↑+2CO2↑
    D.电池总反应为Li2CO3=Li2O+CO2↑
    16.(2020·全国·统考高考真题)科学家近年发明了一种新型Zn−CO2水介质电池。电池示意图如图,电极为金属锌和选择性催化材料,放电时,温室气体CO2被转化为储氢物质甲酸等,为解决环境和能源问题提供了一种新途径。

    下列说法错误的是
    A.放电时,负极反应为
    B.放电时,1 mol CO2转化为HCOOH,转移的电子数为2 mol
    C.充电时,电池总反应为
    D.充电时,正极溶液中OH−浓度升高
    17.(2020·海南·高考真题)某燃料电池主要构成要素如图所示,下列说法正确的是

    A.电池可用于乙醛的制备
    B.b电极为正极
    C.电池工作时,a电极附近pH降低
    D.a电极的反应式为O2+4e- -4H+ =2H2O
    18.(2020·天津·高考真题)熔融钠-硫电池性能优良,是具有应用前景的储能电池。下图中的电池反应为(x=5~3,难溶于熔融硫),下列说法错误的是

    A.Na2S4的电子式为
    B.放电时正极反应为
    C.Na和Na2Sx分别为电池的负极和正极
    D.该电池是以为隔膜的二次电池
    19.(2019·全国·高考真题)利用生物燃料电池原理研究室温下氨的合成,电池工作时MV2+/MV+在电极与酶之间传递电子,示意图如下所示。下列说法错误的是

    A.相比现有工业合成氨,该方法条件温和,同时还可提供电能
    B.阴极区,在氢化酶作用下发生反应H2+2MV2+2H++2MV+
    C.正极区,固氮酶为催化剂,N2发生还原反应生成NH3
    D.电池工作时质子通过交换膜由负极区向正极区移动
    20.(2019·全国·高考真题)为提升电池循环效率和稳定性,科学家近期利用三维多孔海绵状Zn(3D−Zn)可以高效沉积ZnO的特点,设计了采用强碱性电解质的3D−Zn—NiOOH二次电池,结构如下图所示。电池反应为Zn(s)+2NiOOH(s)+H2O(l)ZnO(s)+2Ni(OH)2(s)。以下说法不正确的是

    A.三维多孔海绵状Zn具有较高的表面积,所沉积的ZnO分散度高
    B.充电时阳极反应为Ni(OH)2(s)+OH−(aq)−e−=NiOOH(s)+H2O(l)
    C.放电时负极反应为Zn(s)+2OH−(aq)−2e−=ZnO(s)+H2O(l)
    D.放电过程中OH−通过隔膜从负极区移向正极区
    21.(2018·全国·高考真题)我国科学家研发了一种室温下“可呼吸”的Na-CO2二次电池。将NaClO4溶于有机溶剂作为电解液,钠和负载碳纳米管的镍网分别作为电极材料,电池的总反应为:3CO2+4Na2Na2CO3+C。下列说法错误的是(  )

    A.放电时,ClO4-向负极移动
    B.充电时释放CO2,放电时吸收CO2
    C.放电时,正极反应为:3CO2+4e-=2CO32-+C
    D.充电时,正极反应为:Na++e-=Na
    22.(2018·全国·高考真题)一种可充电锂-空气电池如图所示。当电池放电时,O2与Li+在多孔碳材料电极处生成Li2O2-x(x=0或1)。下列说法正确的是(  )

    A.放电时,多孔碳材料电极为负极
    B.放电时,外电路电子由多孔碳材料电极流向锂电极
    C.充电时,电解质溶液中Li+向多孔碳材料区迁移
    D.充电时,电池总反应为Li2O2-x=2Li+(1—)O2
    23.(2019·浙江·高考真题)化学电源在日常生活和高科技领域中都有广泛应用。下列说法不正确的是
    A.Zn2+向Cu电极方向移动,Cu电极附近溶液中H+浓度增加
    B.正极的电极反应式为Ag2O+2e−+H2O=2Ag+2OH−
    C.锌筒作负极,发生氧化反应,锌筒会变薄
    D.使用一段时间后,电解质溶液的酸性减弱,导电能力下降
    24.(2019·天津·高考真题)我国科学家研制了一种新型的高比能量锌-碘溴液流电池,其工作原理示意图如下。图中贮液器可储存电解质溶液,提高电池的容量。下列叙述不正确的是

    A.放电时,a电极反应为
    B.放电时,溶液中离子的数目增大
    C.充电时,b电极每增重,溶液中有被氧化
    D.充电时,a电极接外电源负极
    25.(2019·浙江·统考高考真题)最近,科学家研发了“全氢电池”,其工作原理如图所示。下列说法不正确的是

    A.右边吸附层中发生了还原反应
    B.负极的电极反应是H2-2e-+2OH-=2H2O
    C.电池的总反应是2H2+O2=2H2O
    D.电解质溶液中Na+向右移动,向左移动

    二、多选题
    26.(2022·山东·高考真题)设计如图装置回收金属钴。保持细菌所在环境pH稳定,借助其降解乙酸盐生成,将废旧锂离子电池的正极材料转化为,工作时保持厌氧环境,并定时将乙室溶液转移至甲室。已知电极材料均为石墨材质,右侧装置为原电池。下列说法正确的是

    A.装置工作时,甲室溶液pH逐渐增大
    B.装置工作一段时间后,乙室应补充盐酸
    C.乙室电极反应式为
    D.若甲室减少,乙室增加,则此时已进行过溶液转移

    三、实验题
    27.(2021·北京·高考真题)某小组探究卤素参与的氧化还原反应,从电极反应角度分析物质氧化性和还原性的变化规律。
    (1)浓盐酸与MnO2混合加热生成氯气。氯气不再逸出时,固液混合物A中仍存在盐酸和MnO2。
    ①反应的离子方程式是_______。
    ②电极反应式:
    i.还原反应:MnO2+2e-+4H+=Mn2++2H2O
    ii.氧化反应:_______。
    ③根据电极反应式,分析A中仍存在盐酸和MnO2的原因。
    i.随c(H+)降低或c(Mn2+)浓度升高,MnO2氧化性减弱。
    ii.随c(Cl-)降低,_______。
    ④补充实验证实了③中的分析。

    实验操作
    试剂
    产物
    I

    较浓H2SO4
    有氯气
    II
    a
    有氯气
    III
    a+b
    无氯气

    a是_______,b是_______。
    (2)利用c(H+)浓度对MnO2氧化性的影响,探究卤素离子的还原性。相同浓度的KCl、KBr和KI溶液,能与MnO2反应所需的最低c(H+)由大到小的顺序是_______,从原子结构角度说明理由______________。
    (3)根据(1)中结论推测:酸性条件下,加入某种化合物可以提高溴的氧化性,将Mn2+氧化为MnO2。经实验证实了推测,该化合物是_______。
    (4)Ag分别与1mol·L-1的盐酸、氢溴酸和氢碘酸混合,Ag只与氢碘酸发生置换反应,试解释原因:_______。
    (5)总结:物质氧化性和还原性变化的一般规律是_______。
    28.(2021·北京·高考真题)某小组实验验证“Ag++Fe2+Fe3++Ag↓”为可逆反应并测定其平衡常数。
    (1)实验验证
    实验I:将0.0100 mol/L Ag2SO4溶液与0.0400 mo/L FeSO4溶液(pH=1)等体积混合,产生灰黑色沉淀,溶液呈黄色。
    实验II:向少量Ag粉中加入0.0100 mol/L Fe2(SO4)3溶液(pH=1),固体完全溶解。
    ①取I中沉淀,加入浓硝酸,证实沉淀为Ag。现象是_______。
    ②II中溶液选用Fe2(SO4)3,不选用Fe(NO3)3的原因是_______。
    综合上述实验,证实“Ag++Fe2+Fe3++Ag↓”为可逆反应。
    ③小组同学采用电化学装置从平衡移动角度进行验证。补全电化学装置示意图,写出操作及现象_______。

    (2)测定平衡常数
    实验Ⅲ:一定温度下,待实验Ⅰ中反应达到平衡状态时,取v mL上层清液,用c1 mol/L KSCN标准溶液滴定Ag+,至出现稳定的浅红色时消耗KSCN标准溶液v1 mL。
    资料:Ag++SCN-AgSCN↓(白色) K=1012
    Fe3++SCN-FeSCN2+(红色) K=102.3
    ①滴定过程中Fe3+的作用是_______。
    ②测得平衡常数K=_______。
    (3)思考问题
    ①取实验I的浊液测定c(Ag+),会使所测K值_______(填“偏高”“偏低”或“不受影响”)。
    ②不用实验II中清液测定K的原因是_______。

    四、原理综合题
    29.(2022·河北·高考真题)氢能是极具发展潜力的清洁能源,以氢燃料为代表的燃料电池有良好的应用前景。
    (1)时,燃烧生成)放热,蒸发吸热,表示燃烧热的热化学方程式为_______。
    (2)工业上常用甲烷水蒸气重整制备氢气,体系中发生如下反应。
    Ⅰ.
    Ⅱ.
    ①下列操作中,能提高平衡转化率的是_______ (填标号)。
    A.增加用量     B.恒温恒压下通入惰性气体
    C.移除          D.加入催化剂
    ②恒温恒压条件下,和反应达平衡时,的转化率为,的物质的量为,则反应Ⅰ的平衡常数_______ (写出含有a、b的计算式;对于反应,,x为物质的量分数)。其他条件不变,起始量增加到,达平衡时,,平衡体系中的物质的量分数为_______(结果保留两位有效数字)。
    (3)氢氧燃料电池中氢气在_______(填“正”或“负”)极发生反应。
    (4)在允许自由迁移的固体电解质燃料电池中,放电的电极反应式为_______。
    (5)甲醇燃料电池中,吸附在催化剂表面的甲醇分子逐步脱氢得到CO,四步可能脱氢产物及其相对能量如图,则最可行途径为a→_______(用等代号表示)。

    30.(2021·河北·统考高考真题)当今,世界多国相继规划了碳达峰、碳中和的时间节点。因此,研发二氧化碳利用技术,降低空气中二氧化碳含量成为研究热点。
    (1)大气中的二氧化碳主要来自于煤、石油及其他含碳化合物的燃烧。已知25℃时,相关物质的燃烧热数据如表:
    物质
    H2(g)
    C(石墨,s)
    C6H6(l)
    燃烧热△H(kJ•mol-1)
    -285.8
    -393.5
    -3267.5

    (1)则25℃时H2(g)和C(石墨,s)生成C6H6(l)的热化学方程式为________。
    (2)雨水中含有来自大气的CO2,溶于水中的CO2进一步和水反应,发生电离:
    ①CO2(g)=CO2(aq)
    ②CO2(aq)+H2O(l)=H+(aq)+HCO(aq)
    25℃时,反应②的平衡常数为K2。
    溶液中CO2的浓度与其在空气中的分压成正比(分压=总压×物质的量分数),比例系数为ymol•L-1•kPa-1,当大气压强为pkPa,大气中CO2(g)的物质的量分数为x时,溶液中H+浓度为________mol•L-1(写出表达式,考虑水的电离,忽略HCO的电离)
    (3)105℃时,将足量的某碳酸氢盐(MHCO3)固体置于真空恒容容器中,存在如下平衡:2MHCO3(s)M2CO3(s)+H2O(g)+CO2(g)。上述反应达平衡时体系的总压为46kPa。
    保持温度不变,开始时在体系中先通入一定量的CO2(g),再加入足量MHCO3(s),欲使平衡时体系中水蒸气的分压小于5kPa,CO2(g)的初始压强应大于________kPa。
    (4)我国科学家研究Li—CO2电池,取得了重大科研成果,回答下列问题:
    ①Li—CO2电池中,Li为单质锂片,则该电池中的CO2在___(填“正”或“负”)极发生电化学反应。研究表明,该电池反应产物为碳酸锂和单质碳,且CO2电还原后与锂离子结合形成碳酸锂按以下4个步骤进行,写出步骤Ⅲ的离子方程式。
    Ⅰ.2CO2+2e-=C2O Ⅱ.C2O=CO2+CO
    Ⅲ.__________         Ⅳ.CO+2Li+=Li2CO3
    ②研究表明,在电解质水溶液中,CO2气体可被电化学还原。
    Ⅰ.CO2在碱性介质中电还原为正丙醇(CH3CH2CH2OH)的电极反应方程式为_________。
    Ⅱ.在电解质水溶液中,三种不同催化剂(a、b、c)上CO2电还原为CO的反应进程中(H+被还原为H2的反应可同时发生),相对能量变化如图.由此判断,CO2电还原为CO从易到难的顺序为_______(用a、b、c字母排序)。

    31.(2021·重庆·统考高考真题)含结晶水的无机物可应用在吸波材料、电极材料和相变储能材料等领域。胆矾(CuSO4·5H2O)是一种重要的结晶水合物。
    (1)硫酸铜参比电极具有电位稳定的优点,可用于土壤环境中钢质管道的电位监测。测量的电化学原理如图所示。回答下列问题:

    ①负极的电极反应式为_______。
    ②测量后参比电极中CuSO4溶液的浓度_______(填"变大”,“变小”或“不变")。
    (2)把胆矾放到密闭容器内,缓缓抽去其中的水气,胆矾分三次依次脱水,各步脱水过程为一系列的动态平衡,反应式如下(脱水过程为吸热反应)。
    反应I:CuSO4·5H2O (s) CuSO4·3H2O (s) + 2H2O(g)
    反应II:CuSO4·3H2O (s) CuSO4·H2O (s) + 2H2O(g)
    反应III:CuSO4·H2O (s) CuSO4(s) + H2O(g)
    如图为50°C时水合物中水的质量分数 w与压强p(H2O)的关系图,回答下列问题:

    ①用无水CuSO4检验乙醇中含有微量水的现象是_______。
    ②反应Ⅰ对应的线段为_______(填“ab”、“ed”或“ef”)。
    ③反应Ⅱ的平衡常数Kp=_______Pa2。
    ④反应III在60°C和50°C的平衡压强p(H2O)分别为p1和p2,则p2_______ p2 (填*>”、“<”或“=”)。
    ⑤当样品状态c点下网到M点,体系存在的固体有_______; 转化率为_______% (保留小数点后两位)。
    ⑥25°C时为了保持CuSO4·5H2O晶体纯度,可将其存在盛有大量Na2CO3· H2O晶体(平衡压强p(H2O)=706Pa)的密闭容器中,简述其理由_______。
    32.(2020·江苏·高考真题)CO2/ HCOOH循环在氢能的贮存/释放、燃料电池等方面具有重要应用。

    (1)CO2催化加氢。在密闭容器中,向含有催化剂的KHCO3溶液(CO2与KOH溶液反应制得)中通入H2生成HCOO-,其离子方程式为__________;其他条件不变,HCO3-转化为HCOO-的转化率随温度的变化如图-1所示。反应温度在40℃~80℃范围内,HCO3-催化加氢的转化率迅速上升,其主要原因是_____________。
    (2) HCOOH燃料电池。研究 HCOOH燃料电池性能的装置如图-2所示,两电极区间用允许K+、H+通过的半透膜隔开。

    ①电池负极电极反应式为_____________;放电过程中需补充的物质A为_________(填化学式)。
    ②图-2所示的 HCOOH燃料电池放电的本质是通过 HCOOH与O2的反应,将化学能转化为电能,其反应的离子方程式为_______________。
    (3) HCOOH催化释氢。在催化剂作用下, HCOOH分解生成CO2和H2可能的反应机理如图-3所示。

    ①HCOOD催化释氢反应除生成CO2外,还生成__________(填化学式)。
    ②研究发现:其他条件不变时,以 HCOOK溶液代替 HCOOH催化释氢的效果更佳,其具体优点是_______________。

    参考答案:
    1.A
    【分析】根据图示的电池结构和题目所给信息可知,Ⅲ区Zn为电池的负极,电极反应为Zn-2e-+4OH-=Zn(OH),Ⅰ区MnO2为电池的正极,电极反应为MnO2+2e-+4H+=Mn2++2H2O;电池在工作过程中,由于两个离子选择隔膜没有指明的阳离子隔膜还是阴离子隔膜,故两个离子隔膜均可以通过阴、阳离子,因此可以得到Ⅰ区消耗H+,生成Mn2+,Ⅱ区的K+向Ⅰ区移动或Ⅰ区的SO向Ⅱ区移动,Ⅲ区消耗OH-,生成Zn(OH),Ⅱ区的SO向Ⅲ区移动或Ⅲ区的K+向Ⅱ区移动。据此分析答题。
    【详解】A.根据分析,Ⅱ区的K+只能向Ⅰ区移动,A错误;
    B.根据分析,Ⅰ区的SO向Ⅱ区移动,B正确;
    C.MnO2电极的电极反应式为MnO2+2e-+4H+=Mn2++2H2O,C正确;
    D.电池的总反应为Zn+4OH-+MnO2+4H+=Zn(OH)+Mn2++2H2O,D正确;
    故答案选A。

    2.C
    【分析】充电时光照光催化电极产生电子和空穴,驱动阴极反应(Li++e-=Li+)和阳极反应(Li2O2+2h+=2Li++O2),则充电时总反应为Li2O2=2Li+O2,结合图示,充电时金属Li电极为阴极,光催化电极为阳极;则放电时金属Li电极为负极,光催化电极为正极;据此作答。
    【详解】A.光照时,光催化电极产生电子和空穴,驱动阴极反应和阳极反应对电池进行充电,结合阴极反应和阳极反应,充电时电池的总反应为Li2O2=2Li+O2,A正确;
    B.充电时,光照光催化电极产生电子和空穴,阴极反应与电子有关,阳极反应与空穴有关,故充电效率与光照产生的电子和空穴量有关,B正确;
    C.放电时,金属Li电极为负极,光催化电极为正极,Li+从负极穿过离子交换膜向正极迁移,C错误;
    D.放电时总反应为2Li+O2=Li2O2,正极反应为O2+2Li++2e-=Li2O2,D正确;
    答案选C。

    3.C
    【详解】A.由充电时电极a的反应可知,充电时电极a发生还原反应,所以电极a是阴极,则电极b是阳极,故A错误;
    B.放电时电极反应和充电时相反,则由放电时电极a的反应为可知,NaCl溶液的pH不变,故B错误;
    C.放电时负极反应为,正极反应为,反应后Na+和Cl-浓度都增大,则放电时NaCl溶液的浓度增大,故C正确;
    D.充电时阳极反应为,阴极反应为,由得失电子守恒可知,每生成1molCl2,电极a质量理论上增加23g/mol2mol=46g,故D错误;
    答案选C。

    4.B
    【分析】锂海水电池的总反应为2Li+2H2O═2LiOH+H2↑, M极上Li失去电子发生氧化反应,则M电极为负极,电极反应为Li-e-=Li+,N极为正极,电极反应为2H2O+2e-=2OH-+H2↑,同时氧气也可以在N极得电子,电极反应为O2+4e-+2H2O=4OH-。
    【详解】A.海水中含有丰富的电解质,如氯化钠、氯化镁等,可作为电解质溶液,故A正确;
    B.由上述分析可知,N为正极,电极反应为2H2O+2e-=2OH-+H2↑,和反应O2+4e-+2H2O=4OH-,故B错误;
    C.Li为活泼金属,易与水反应,玻璃陶瓷的作用是防止水和Li反应,并能传导离子,故C正确;
    D.该电池不可充电,属于一次电池,故D正确;
    答案选B。
    5.C
    【详解】A. 如果玻璃薄膜球内电极的电势低,则该电极为负极、负极发生氧化反应而不是还原反应,A错误;
    B.已知:pH与电池的电动势E存在关系:pH=(E-常数)/0.059,则玻璃膜内外氢离子浓度的差异会引起电动势的变化,B错误;
    C.pH与电池的电动势E存在关系:pH=(E-常数)/0.059,则分别测定含已知pH的标准溶液和未知溶液的电池的电动势,可得出未知溶液的pH,C正确;
    D. pH计工作时,利用原电池原理,则化学能转化为电能,D错误;
    答案选C。

    6.A
    【分析】放电时负极反应:,正极反应:Cl2+2e-=2Cl-,消耗氯气,放电时,阴离子移向负极,充电时阳极:2Cl--2e-=Cl2,由此解析。
    【详解】A. 放电时负极失电子,发生氧化反应,电极反应:,故A正确;
    B. 放电时,阴离子移向负极,放电时透过多孔活性炭电极向NaCl中迁移,故B错误;
    C. 放电时每转移电子,正极:Cl2+2e-=2Cl-,理论上释放,故C错误;
    D. 充电过程中,阳极:2Cl--2e-=Cl2,消耗氯离子,溶液浓度减小,故D错误;
    故选A。

    7.A
    【详解】A.H2分子里的共价键H-H键是由两个s电子重叠形成的,称为s-s σ键,Cl2分子里的共价键Cl-Cl键是由两个p电子重叠形成的,称为p-p σ键,故A错误;
    B.HCl气体极易溶于水,遇到空气中的水蒸气后立即形成盐酸小液滴,即白雾,故B正确;
    C.浓氨水易挥发,挥发的氨气和HCl气体互相反应,化学方程式NH3+HCl=NH4Cl,生成NH4Cl氯化铵固体小颗粒,固体粉末就是烟,故C正确;
    D.与的反应是能够自发进行的氧化还原反应,可通过原电池将与反应的化学能转化为电能,故D正确;
    故选A。

    8.D
    【分析】由图可知,a电极为原电池的负极,单质钾片失去电子发生氧化反应生成钾离子,电极反应式为K—e-=K+,b电极为正极,在钾离子作用下,氧气在正极得到电子发生还原反应生成超氧化钾;据以上分析解答。
    【详解】A.金属性强的金属钾易与氧气反应,为防止钾与氧气反应,电池所选择隔膜应允许通过,不允许通过,故A正确;
    B.由分析可知,放电时,a为负极,b为正极,电流由b电极沿导线流向a电极,充电时,b电极应与直流电源的正极相连,做电解池的为阳极,故B正确;
    C.由分析可知,生成1mol超氧化钾时,消耗1mol氧气,两者的质量比值为1mol×71g/mol:1mol×32g/mol≈2.22:1,故C正确;
    D.铅酸蓄电池充电时的总反应方程式为2PbSO4+2H2O=PbO2+Pb+2H2SO4,反应消耗2mol水,转移2mol电子,由得失电子数目守恒可知,耗钾时,铅酸蓄电池消耗水的质量为×18g/mol=1.8g,故D错误;
    故选D。
    9.B
    【分析】由题中信息可知,该电池充电时得电子成为Li嵌入电极A中,可知电极A在充电时作阴极,故其在放电时作电池的负极,而电极B是电池的正极。
    【详解】A.由图可知,集流体A与电极A相连,充电时电极A作阴极,故充电时集流体A与外接电源的负极相连,A说法正确;
    B.放电时,外电路通过a mol电子时,内电路中有a mol 通过LiPON薄膜电解质从负极迁移到正极,但是LiPON薄膜电解质没有损失,B说法不正确;
    C.放电时,电极B为正极,发生还原反应,反应可表示为,C说法正确;
    D.电池放电时,嵌入在非晶硅薄膜中的锂失去电子变成,正极上得到电子和变为,故电池总反应可表示为,D说法正确。
    综上所述,相关说法不正确的是B,本题选B。
    10.C
    【分析】碱性环境下,甲醇燃料电池总反应为:2CH3OH+3O2+4KOH=2K2CO3+6H2O;N2H4-O2清洁燃料电池总反应为:N2H4+O2=N2+2H2O;偏二甲肼[(CH3)2NNH2]中C和N的化合价均为-2价,H元素化合价为+1价,所以根据氧化还原反应原理可推知其燃料电池的总反应为:(CH3)2NNH2+4O2+4KOH=2K2CO3+N2+6H2O,据此结合原电池的工作原理分析解答。
    【详解】A.放电过程为原电池工作原理,所以钾离子均向正极移动,A错误;
    B.根据上述分析可知,N2H4-O2清洁燃料电池的产物为氮气和水,其总反应中未消耗KOH,所以KOH的物质的量不变,其他两种燃料电池根据总反应可知,KOH的物质的量减小,B错误;
    C.理论放电量与燃料的物质的量和转移电子数有关,设消耗燃料的质量均为mg,则甲醇、N2H4和(CH3)2NNH2放电量(物质的量表达式)分别是:、、,通过比较可知(CH3)2NNH2理论放电量最大,C正确;
    D.根据转移电子数守恒和总反应式可知,消耗1molO2生成的氮气的物质的量为1mol,在标准状况下为22.4L,D错误;
    故选C。
    11.B
    【分析】由题干信息可知,放电时,M极由于Li比Ni更活泼,也比N极上的Sb、Bi、Sn更活泼,故M极作负极,电极反应为:Li-e-=Li+,N极为正极,电极反应为:3Li++3e-+Bi=Li3Bi,据此分析解题。
    【详解】A.由分析可知,放电时,M电极反应为Li-e-=Li+,A错误;
    B.由分析可知,放电时,M极为负极,N极为正极,故由M电极向N电极移动,B正确;
    C.由二次电池的原理可知,充电时和放电时同一电极上发生的反应互为逆过程,M电极的电极反应为:Li++e-= Li,故电极质量增大,C错误;
    D.由二次电池的原理可知,充电时和放电时同一电极上发生的反应互为逆过程,充电时,N电极反应为,D错误;
    故答案为:B。
    12.B
    【详解】根据题干信息可知,放电时总反应为4Na+3CO2=2Na2CO3+C。
    A.放电时负极上Na发生氧化反应失去电子生成Na+,故A错误;
    B.放电时正极为CO2得到电子生成C,故B正确;
    C.放电时阳离子移向还原电极,即阳离子由负极移向正极,故C错误;
    D.放电时装置为原电池,能量转化关系为化学能转化为电能和化学能等,故D错误;
    综上所述,符合题意的为B项,故答案为B。
    13.D
    【详解】A.Li是活泼金属能与水发生反应,因此不能采用水溶液作为电解质,应使用有机电解液,故A正确;
    B.充电时原电池的负极与电源负极相连作阴极,原电池的正极与电源正极相连作阳极,阳离子由阳极向阴极移动,则由正极(电池中标注“+”,实际阳极)向负极(电池中标注“-”,实际阴极)迁移,故B正确;
    C.由装置可知,该原电池的正极为二氧化碳得电子生成C单质,电极反应式为:,故C正确;
    D.由正极的反应历程图示可知,C为最终的产物,不是中间产物,故D错误;
    故选:D。
    14.D
    【详解】A.该装置中,若Zn比Cu活泼,则总反应为Zn与硫酸的反应,此时Zn为负极,Cu为正极;若Cu比Zn活泼,则总反应为Cu与硫酸锌的反应,此时Cu为负极,Zn为正极,所以可以比较Zn与Cu的金属性强弱,A正确;
    B.稀硫酸中含有大量氢离子,可以抑制氯气的溶解,而稀硫酸中的水可以吸收HCl,洗气后再用浓硫酸干燥,B正确;
    C.乙酸、乙醇和浓硫酸混合加热可以制取乙酸乙酯,饱和碳酸钠溶液可以降低乙酸乙酯的溶解度,同时吸收乙酸和乙醇,便于分液分离得到乙酸乙酯,沸石可以防止暴沸,C正确;
    D.制取氯气应用浓盐酸和二氧化锰共热,稀盐酸不与二氧化锰反应,D错误;
    综上所述答案为D。
    15.B
    【分析】根据图示可知在电极a上O2得到电子变为O2-,所以a电极为负极;在电极b上熔融Li2CO3失去电子变为CO2、O2,所以金属电极b为正极,然后根据同种电荷相互排斥,一致电荷相互吸引的原则分析判断。
    【详解】A.根据图示可知:电极a上O2得到电子变为O2-,所以a电极为负极;在电极b上熔融Li2CO3失去电子变为CO2、O2,所以金属电极b为正极。CO会向正电荷较多的正极区移动,故CO迁移方向为界面X →电极b,A正确;
    B.在电极a上发生反应:O2+4e-=2O2-,在电极b上发生反应:2CO-4e-= O2↑+2CO2↑,在同一闭合回路中电子转移数目相等,可知电极a上消耗的O2和电极b上产生的CO2的物质的量之比为1:2,B错误;
    C.电极b为负极,失去电子发生氧化反应 ,则负极的电极反应为2CO-4e-=O2↑+ 2CO2↑,C正确;
    D.负极上熔融的Li2CO3失去电子被氧化产生O2、CO2气体,反应式为Li2CO3(熔融)=2Li++;2CO-4e-=O2↑+2CO2↑,正极上发生反应:O2+4e-=2O2-,根据在同一闭合回路中电子转移数目相等,将正、负极电极式叠加,可得总反应方程式为:Li2CO3=Li2O+CO2↑,D正确;
    故合理选项是B。
    16.D
    【分析】由题可知,放电时,CO2转化为HCOOH,即CO2发生还原反应,故放电时右侧电极为正极,左侧电极为负极,Zn发生氧化反应生成;充电时,右侧为阳极,H2O发生氧化反应生成O2,左侧为阴极,发生还原反应生成Zn,以此分析解答。
    【详解】A.放电时,负极上Zn发生氧化反应,电极反应式为:,故A正确,不选;
    B.放电时,CO2转化为HCOOH,C元素化合价降低2,则1molCO2转化为HCOOH时,转移电子数为2mol,故B正确,不选;
    C.充电时,阳极上H2O转化为O2,负极上转化为Zn,电池总反应为:,故C正确,不选;
    D.充电时,正极即为阳极,电极反应式为:,溶液中H+浓度增大,溶液中c(H+)•c(OH-)=KW,温度不变时,KW不变,因此溶液中OH-浓度降低,故D错误,符合题意;
    答案选D。
    17.A
    【分析】该燃料电池中,乙烯和水发生氧化反应,所以通入乙烯和水的电极是负极,氧气易得电子发生还原反应,所以通入氧气的电极是正极,由图可知负极上乙烯和水生成乙醛和氢离子,氢离子移向正极,正极上氧气和氢离子反应生成水,x为水,由此分析。
    【详解】A.该电池将乙烯和水转化为了乙醛,可用于乙醛的制备,故A符合题意;
    B.根据分析,a电极为正极,b电极为负极,故B不符合题意;
    C.电池工作时,氢离子移向正极,a电极的反应式为O2+4e- +4H+ =2H2O,a电极附近pH不变,故C不符合题意;
    D.根据分析,a电极为正极,正极发生还原反应,a电极的反应式为O2+4e- +4H+ =2H2O,故D不符合题意;
    答案选A。
    18.C
    【分析】根据电池反应:可知,放电时,钠作负极,发生氧化反应,电极反应为:Na-e-= Na+,硫作正极,发生还原反应,电极反应为,据此分析。
    【详解】A.Na2S4属于离子化合物,4个硫原子间形成三对共用电子对,电子式为,故A正确;
    B.放电时发生的是原电池反应,正极发生还原反应,电极反应为:,故B正确;
    C.放电时,Na为电池的负极,正极为硫单质,故C错误;
    D.放电时,该电池是以钠作负极,硫作正极的原电池,充电时,是电解池,为隔膜,起到电解质溶液的作用,该电池为二次电池,故D正确;
    答案选C。
    19.B
    【分析】由生物燃料电池的示意图可知,左室电极为燃料电池的负极,MV+在负极失电子发生氧化反应生成MV2+,电极反应式为MV+—e—= MV2+,放电生成的MV2+在氢化酶的作用下与H2反应生成H+和MV+,反应的方程式为H2+2MV2+=2H++2MV+;右室电极为燃料电池的正极,MV2+在正极得电子发生还原反应生成MV+,电极反应式为MV2++e—= MV+,放电生成的MV+与N2在固氮酶的作用下反应生成NH3和MV2+,反应的方程式为N2+6H++6MV+=6MV2++NH3,电池工作时,氢离子通过交换膜由负极向正极移动。
    【详解】A项、相比现有工业合成氨,该方法选用酶作催化剂,条件温和,同时利用MV+和MV2+的相互转化,化学能转化为电能,故可提供电能,故A正确;
    B项、左室为负极区,MV+在负极失电子发生氧化反应生成MV2+,电极反应式为MV+—e—= MV2+,放电生成的MV2+在氢化酶的作用下与H2反应生成H+和MV+,反应的方程式为H2+2MV2+=2H++2MV+,故B错误;
    C项、右室为正极区,MV2+在正极得电子发生还原反应生成MV+,电极反应式为MV2++e—= MV+,放电生成的MV+与N2在固氮酶的作用下反应生成NH3和MV2+,故C正确;
    D项、电池工作时,氢离子(即质子)通过交换膜由负极向正极移动,故D正确。
    故选B。
    【点睛】本题考查原池原理的应用,注意原电池反应的原理和离子流动的方向,明确酶的作用是解题的关键。
    20.D
    【详解】A、三维多孔海绵状Zn具有较高的表面积,吸附能力强,所沉积的ZnO分散度高,A正确;
    B、充电相当于是电解池,阳极发生失去电子的氧化反应,根据总反应式可知阳极是Ni(OH)2失去电子转化为NiOOH,电极反应式为Ni(OH)2(s)+OH-(aq)-e-=NiOOH(s)+H2O(l),B正确;
    C、放电时相当于是原电池,负极发生失去电子的氧化反应,根据总反应式可知负极反应式为Zn(s)+2OH-(aq)-2e-=ZnO(s)+H2O(l),C正确;
    D、原电池中阳离子向正极移动,阴离子向负极移动,则放电过程中OH-通过隔膜从正极区移向负极区,D错误。
    答案选D。
    21.D
    【分析】原电池中负极发生失去电子的氧化反应,正极发生得到电子的还原反应,阳离子向正极移动,阴离子向负极移动,充电可以看作是放电的逆反应,据此解答。
    【详解】A. 放电时是原电池,阴离子ClO4-向负极移动,A正确;
    B. 电池的总反应为3CO2+4Na2Na2CO3+C,因此充电时释放CO2,放电时吸收CO2,B正确;
    C. 放电时是原电池,正极是二氧化碳得到电子转化为碳,反应为:3CO2+4e−=2CO32-+C,C正确;
    D. 充电时是电解,正极与电源的正极相连,作阳极,发生失去电子的氧化反应,反应为2CO32-+C-4e−=3CO2,D错误。答案选D。
    【点睛】本题以我国科学家发表在化学顶级刊物上的“一种室温下可呼吸的钠、二氧化碳二次电池”为载体考查了原电池和电解池的工作原理,掌握原电池和电解池的工作原理是解答的关键,注意充电与放电关系的理解。本题很好的弘扬了社会主义核心价值观个人层面的爱国精神,落实了立德树人的教育根本任务。
    22.D
    【详解】A.放电时,O2与Li+在多孔碳电极处反应,说明电池内,Li+向多孔碳电极移动,因为阳离子移向正极,所以多孔碳电极为正极,A错误;
    B.因为多孔碳电极为正极,外电路电子应该由锂电极流向多孔碳电极(由负极流向正极),B错误;
    C.充电和放电时电池中离子的移动方向应该相反,放电时,Li+向多孔碳电极移动,充电时向锂电极移动,C错误;
    D.根据图示和上述分析,电池的正极反应是O2与Li+得电子转化为Li2O2-X,电池的负极反应是单质Li失电子转化为Li+,所以总反应为:2Li + (1—)O2 = Li2O2-X,充电的反应与放电的反应相反,所以为Li2O2-X = 2Li +(1—)O2,选项D正确;
    答案选D。
    23.A
    【详解】A.Zn较Cu活泼,做负极,Zn失电子变Zn2+,电子经导线转移到铜电极,铜电极负电荷变多,吸引了溶液中的阳离子,因而Zn2+和H+迁移至铜电极,H+氧化性较强,得电子变H2,因而c(H+)减小,A项错误;
    B. Ag2O作正极,得到来自Zn失去的电子,被还原成Ag,结合KOH作电解液,故电极反应式为Ag2O+2e−+H2O=2Ag+2OH−,B项正确;
    C.Zn为较活泼电极,做负极,发生氧化反应,电极反应式为Zn-2e-=Zn2+,锌溶解,因而锌筒会变薄,C项正确;
    D.铅蓄电池总反应式为PbO2 + Pb + 2H2SO42PbSO4 + 2H2O,可知放电一段时间后,H2SO4不断被消耗,因而电解质溶液的酸性减弱,导电能力下降,D项正确。
    故答案选A。
    24.D
    【分析】放电时,Zn是负极,负极反应式为Zn-2e-═Zn2+,正极反应式为I2Br-+2e-=2I-+Br-,充电时,阳极反应式为Br-+2I--2e-=I2Br-、阴极反应式为Zn2++2e-=Zn,只有阳离子能穿过交换膜,阴离子不能穿过交换膜,据此分析解答。
    【详解】A、放电时,a电极为正极,碘得电子变成碘离子,正极反应式为I2Br-+2e-=2I-+Br-,故A正确;
    B、放电时,正极反应式为I2Br-+2e-=2I-+Br-,溶液中离子数目增大,故B正确;
    C、充电时,b电极反应式为Zn2++2e-=Zn,每增加0.65g,转移0.02mol电子,阳极反应式为Br-+2I--2e-=I2Br-,有0.02molI-失电子被氧化,故C正确;
    D、充电时,a是阳极,应与外电源的正极相连,故D错误;
    故选D。
    【点睛】本题考查化学电源新型电池,会根据电极上发生的反应判断正负极是解本题关键,会正确书写电极反应式,易错选项是B,正极反应式为I2Br-+2e-=2I-+Br-,溶液中离子数目增大。
    25.C
    【分析】由电子的流动方向可以得知左边为负极,发生氧化反应;右边为正极,发生还原反应。
    【详解】由电子的流动方向可以得知左边为负极,发生氧化反应;右边为正极,发生还原反应,故选项A、B正确;电池的总反应没有O2参与,总反应方程式不存在氧气,故C选项不正确;在原电池中,阳离子向正极移动,阴离子向负极移动,故D选项正确。答案选C。
    A. 右边吸附层中发生了还原反应,A正确;
    B. 氢气在负极上发生氧化反应,电解质中有强碱,故负极的电极反应是H2-2e-+2OH-=2H2O,B正确;
    C. 没有氧气参与反应,C不正确;
    D. 电解质溶液中Na+向右边的正极移动,向左边的负极移动,D正确。
    综上所述,本题选不正确的,故选C。
    26.BD
    【分析】由于乙室中两个电极的电势差比甲室大,所以乙室是原电池,甲室是电解池,然后根据原电池、电解池反应原理分析解答。
    【详解】A.电池工作时,甲室中细菌上乙酸盐的阴离子失去电子被氧化为CO2气体,同时生成H+,电极反应式为CH3COO--8 e-+2 H2O =2CO2↑+7 H+,H+通过阳膜进入阴极室,甲室的电极反应式为Co2++2e-=Co,因此,甲室溶液pH逐渐减小,A错误;
    B.对于乙室,正极上LiCoO2得到电子,被还原为Co2+,同时得到Li+,其中的O2-与溶液中的H+结合H2O,电极反应式为2LiCoO2+2e-+8H+=2Li++2Co2++4H2O,负极发生的反应为CH3COO--8 e-+2 H2O =2CO2↑+7 H+,负极产生的H+通过阳膜进入正极室,但是乙室的H+浓度仍然是减小的,因此电池工作一段时间后应该补充盐酸,B正确;
    C.电解质溶液为酸性,不可能大量存在OH-,乙室电极反应式为:LiCoO2+e-+4H+=Li++Co2++2H2O,C错误;
    D.若甲室Co2+减少200 mg,则电子转移物质的量为n(e-)= ;若乙室Co2+增加300 mg,则转移电子的物质的量为n(e-)=,由于电子转移的物质的量不等,说明此时已进行过溶液转移,即将乙室部分溶液转移至甲室,D正确;
    故合理选项是BD。

    27.(1)     MnO2+4H+ +2Cl- Mn2++Cl2↑ + 2H2O     2Cl--2e- =Cl2↑     Cl-还原性减弱或Cl2 的氧化性增强     KCl固体(或浓/饱和溶液)     MnSO4固体(或浓/饱和溶液)
    (2)     KCl>KBr>KI     Cl、Br、I位于第VIIA族,从上到下电子层数逐渐增加,原子半径逐渐增大,得电子能力逐渐减弱,阴离子的还原性逐渐增强
    (3)AgNO3 或Ag2SO4
    (4)比较AgX的溶解度,AgI 溶解度最小,Ag++I-= AgI↓使得Ag还原性增强的最多,使得2Ag+2H+=2Ag++ H2↑反应得以发生
    (5)氧化剂(还原剂)的浓度越大,其氧化性(还原性)越强,还原产物(还原产物)的浓度越大,氧化剂(还原剂)的氧化性(还原性)越小;还原反应中,反应物浓度越大或生成物浓度越小,氧化剂氧化性越强

    【详解】(1)①二氧化锰和浓盐酸制氯气的离子方程式为:MnO2+4H+ +2Cl- Mn2++Cl2↑ + 2H2O;②氧化反应是元素化合价升高,故氧化反应为:2Cl--2e- =Cl2↑③反应不能发生也可能是还原剂还原性减弱,或者产生了氧化性更强的氧化剂,故答案为:Cl-还原性减弱或Cl2 的氧化性增强④可以从增大氯离子浓度的角度再结合实验II的现象分析,试剂a可以是KCl固体(或浓/饱和溶液);结合实验III的显现是没有氯气,且实验III也加入了试剂a,那一定是试剂b影响了实验III的现象,再结合原因i可知试剂b是MnSO4固体(或浓/饱和溶液);
    (2)非金属性越弱其阴离子的还原性越强,反应时所需的氢离子浓度越小,故顺序是KCl>KBr>KI;其原因是Cl、Br、I位于第VIIA族,从上到下电子层数逐渐增加,原子半径逐渐增大,得电子能力逐渐减弱,阴离子的还原性逐渐增强;
    (3)根据(1)中的结论推测随Cl-浓度降低导致二氧化锰的氧化性减弱,那么如果进一步降低Cl-浓度降低则可以导致可以提高溴的氧化性,将Mn2+氧化为MnO2,故答案为:AgNO3 或Ag2SO4;
    (4)若要使反应2Ag+2H+=2Ag++ H2↑发生,根据本题的提示可以降低Ag+浓度,对比AgX的溶解度,AgI 溶解度最小,故Ag只与氢碘酸发生置换反应的原因是:比较AgX的溶解度,AgI 溶解度最小,Ag++I-= AgI↓使得Ag还原性增强的最多,使得2Ag+2H+=2Ag++ H2↑反应得以发生;
    (5)通过本题可以发现,物质氧化性和还原性还与物质的浓度有关,浓度越大氧化性或者还原性越强,故答案为:氧化剂(还原剂)的浓度越大,其氧化性(还原性)越强,还原产物(还原产物)的浓度越大,氧化剂(还原剂)的氧化性(还原性)越小;还原反应中,反应物浓度越大或生成物浓度越小,氧化剂氧化性越强。
    28.(1)     灰黑色固体溶解,产生红棕色气体     防止酸性条件下,氧化性氧化Fe2+干扰实验结果     a:铂/石墨电极,b:FeSO4 或Fe2(SO4)3或二者混合溶液,c:AgNO3 溶液;操作和现象:闭合开关 K,Ag电极上固体逐渐溶解,指针向左偏转,一段时间后指针归零,再向左侧烧杯中加入滴加较浓的Fe2(SO4)3溶液,与之前的现象相同;或者闭合开关 K,Ag电极上有灰黑色固体析出,指针向右偏转,一段时间后指针归零,再向左侧烧杯中加入滴加较浓的Fe2(SO4)3溶液,Ag电极上固体逐渐减少,指针向左偏转
    (2)     指示剂    
    (3)     偏低     Ag完全反应,无法判断体系是否达到化学平衡状态

    【详解】(1)①由于Ag能与浓硝酸发生反应:Ag+2HNO3(浓)=AgNO3+NO2↑+H2O,故当观察到的现象为灰黑色固体溶解,产生红棕色气体,即可证实灰黑色固体是Ag,故答案为:灰黑色固体溶解,产生红棕色气体。
    ②由于Fe(NO3)3溶液电离出将与溶液中的H+结合成由强氧化性的HNO3,能氧化Fe2+,而干扰实验,故实验II使用的是Fe2(SO4)3溶液,而不是Fe(NO3)3溶液,故答案为:防止酸性条件下,氧化性氧化Fe2+干扰实验结果。
    ③由装置图可知,利用原电池原理来证明反应Fe2++Ag+Ag+Fe3+为可逆反应,两电极反应为:Fe2+-e-Fe3+,Ag++e-Ag,故另一个电极必须是与Fe3+不反应的材料,可用石墨或者铂电极,左侧烧杯中电解质溶液必须含有Fe3+或者Fe2+,采用FeSO4或Fe2(SO4)3或二者混合溶液,右侧烧杯中电解质溶液必须含有Ag+,故用AgNO3溶液,组装好仪器后,加入电解质溶液,闭合开关 K,装置产生电流,电流从哪边流入,指针则向哪个方向偏转,根据b中所加试剂的不同,电流方向可能不同,因此可能观察到的现象为:Ag电极逐渐溶解,指针向左偏转,一段时间后指针归零,说明此时反应达到平衡,再向左侧烧杯中加入滴加较浓的Fe2(SO4)3溶液,与之前的现象相同,表明平衡发生了移动;另一种现象为:Ag电极上有灰黑色固体析出,指针向右偏转,一段时间后指针归零,说明此时反应达到平衡,再向左侧烧杯中加入滴加较浓的Fe2(SO4)3溶液,Ag电极上固体逐渐减少,指针向左偏转,表明平衡发生了移动,故答案为:a:铂/石墨电极,b:FeSO4或Fe2(SO4)3或二者混合溶液,c:AgNO3溶液;操作和现象:闭合开关 K,Ag电极上固体逐渐溶解,指针向左偏转,一段时间后指针归零,再向左侧烧杯中加入滴加较浓的Fe2(SO4)3溶液,与之前的现象相同;或者闭合开关 K,Ag电极上有灰黑色固体析出,指针向右偏转,一段时间后指针归零,再向左侧烧杯中加入滴加较浓的Fe2(SO4)3溶液,Ag电极上固体逐渐减少,指针向左偏转。
    (2)①Fe3+与SCN-反应生成红色FeSCN2+,因Ag+与SCN-反应相较于Fe3+与SCN-反应更加容易及彻底,当溶液变为稳定浅红色,说明溶液中的Ag+恰好完全滴定,且溶液中Fe3+浓度不变,说明上述反应答案平衡,故溶液中Fe3+的作用是滴定反应的指示剂,故答案为:指示剂。
    ②取I中所得上清液vmL。用c1mol/L的KSCN溶液滴定,至溶液变为稳定浅红色时,消耗v1mL,已知:Ag++SCN-AgSCN,K=1012,说明反应几乎进行完全,故有I中上层清液中Ag+的浓度为:c(Ag+)=mol/L,根据平衡三段式进行计算如下:,故反应的平衡常数K== ,故答案为:指示剂;。
    (3)①若取实验I所得浊液测定Ag+浓度,则浊液中还有Ag,因存在平衡Fe2++Ag+Ag+Fe3+,且随着反应Ag++SCN-AgSCN,使得上述平衡逆向移动,则测得平衡体系中的c(Ag+)偏大,即偏大,故所得到的K= 偏小,故答案为:偏小。
    ②由于实验II中Ag完全溶解,故无法判断体系是否达到化学平衡状态,因而不用实验II所得溶液进行测定并计算K,故答案为:Ag完全反应,无法判断体系是否达到化学平衡状态。
    29.(1)H2(g)+O2 (g)=H2O(1) H= -286 kJ•mol-1
    (2)     BC          43%
    (3)负
    (4)CnH2n+2-(6n+2)e-+ (3n+1) O2-=n CO2+(n+1) H2O
    (5)abehj

    【详解】(1)298K时,1gH2燃烧生成H2O(g)放热121 kJ,则1molH2燃烧生成H2O(g)放热=242kJ,用热化学方程式表示为:H2(g)+O2(g)=H2O(g) H1= -242 kJ•mol-1①,又因为1 mol H2O(1)蒸发吸热44kJ,则H2O(g)= H2O(l) H2= -44 kJ•mol-1②,根据盖斯定律可知,表示H2燃烧热的反应热为 H=H1+H2= -286 kJ•mol-1,故答案为:H2(g)+O2 (g)=H2O(1) H= -286 kJ•mol-1;
    (2)①A.增加CH4 (g)用量可以提高H2O(g)的转化率,但是CH4(g)平衡转化率减小,A不符合题意;
    B.恒温恒压下通入惰性气体,相当于减小体系压强,反应混合物中各组分的浓度减小,反应Ⅰ的化学平衡正向移动,能提高CH4(g)平衡转化率,B符合题意;
    C.移除CO(g),减小了反应混合物中CO(g)的浓度,反应Ⅰ的化学平衡正向移动,能提高CH4(g)平衡转化率,C符合题意;
    D.加入催化剂不能改变平衡状态,故不能提高CH4(g)平衡转化率,D不符合题意;
    综上所述,上述操作中,能提高CH4(g)平衡转化率的是BC;
    ②恒温恒压条件下,1 mol CH4 (g)和1 mol H2O(g)反应达平衡时,CH4 (g)的转化率为α,CO2 (g)的物质的量为b mol,则转化的CH4 (g)为α mol,剩余的CH4 (g)为(1-α)mol,根据C元素守恒可知,CO(g)的物质的量为(α-b)mol,根据H和O守恒可知,H2O(g)的物质的量为(1-α-b)mol,H2(g)的物质的量为(3α+b)mol,则反应混合物的总物质的量为(2α+2)mol,平衡混合物中,CH4(g)、H2O(g)、 CO(g) 、H2(g)的物质的量分数分别为、、、,因此,反应I的平衡常数Kx=;其他条件不变,H2O(g)起始量增加到5mol,达平衡时,α=0.90,b =0.65,则平衡时,CH4 (g)为0.1mol,根据C元素守恒可知,CO(g)的物质的量为0.25mol,,根据H和O守恒可知,H2O(g)的物质的量为(5-0.90-0.65 )mol=3.45mol,H2(g)的物质的量为(3α+b )mol=3.35mol,平衡混合物的总物质的量为(2α+6 )mol=7.8mol,平衡体系中H2(g)的物质的量分数为;
    (3)燃料电池中的燃料在负极发生氧化反应,因此,氢氧燃料电池中氢气在负极发生反应;
    (4)在允许O2-自由迁移的固体电解质燃料电池中,CnH2n+2在负极发生氧化反应生成CO2和H2O,电极反应式为CnH2n+2-(6n+2)e-+ (3n+1) O2-=nCO2+(n+1) H2O;
    (5)由图示可知,吸附在催化剂表面的甲醇分子逐步脱氢得到CO,且能垒越低,活化能越小,越容易进行,根据图示可知,其可行的途径为:abehj。

    30.     6C(石墨,s)+3H2(g)= C6H6(l) H=49.1kJmol-1          100.8     正     2C+CO2=2C+C     3CO2+18e- +13H2O=CH3CH2CH2OH+18OH-     c、a、b
    【详解】(1)根据表格燃烧热数据可知,存在反应①C(石墨,s)+O2(g)=CO2(g) H1=-393.5kJmol-1,②H2(g)+O2(g)=H2O(l) H2=-285.8kJmol-1,③C6H6(l)+O2(g)=6CO2(g)+6H2O(l) H3=-3267.5kJmol-1,根据盖斯定律,[①12+②6] -③得反应:6C(石墨,s)+3H2(g)= C6H6(l),H=[(-393.5kJmol-1)+(-285.8kJmol-1)6]-(-3267.5kJmol-1)=49.1kJmol-1,故答案为:6C(石墨,s)+3H2(g)= C6H6(l) H=49.1kJmol-1;
    (2)由题可知,①CO2(s)CO2(aq),②CO2(aq)+H2O(l)H+(aq)+HC(aq),K2=,设c(H+)为α,则c(OH-)=,根据电荷守恒c(H+)=c(OH-)+c(HCO3-),可得c(HCO3-)=α-,大气中的CO2分压p(CO2)=px kPa,溶液中CO2的浓度c(CO2)(aq)=pxy mol/L,将c(H+)、c(OH-)、c(CO2)(aq)带入平衡常数表达式 ,所以解得α=c(H+)=,故答案为:;
    (3)2MHCO3(s)M2CO3(s)+H2O(g)+ CO2(g),等温等容条件下,压强之比等于物质的量之比,可用分压表示物质的量浓度,平衡常数Kp===529kPa2。温度不变化学平衡常数Kp不变,设平衡时,平衡体系中CO2的分压为x,则K== 529kPa2,=kPa=105.8kPa,CO2的初始压强等于平衡压强减去碳酸氢盐分解产生的CO2的分压,即CO2(g)的初始压强应大于105.8kPa-5kPa=100.8kPa,故答案为:100.8;
    (4)①由题意知,Li-CO2电池的总反应式为:4Li+3CO2=2Li2CO3+C,CO2发生得电子的还原反应,则CO2作为电池的正极;CO2还原后与Li+结合成Li2CO3,按4个步骤进行,由步骤II可知生成了C,而步骤IV需要C参加反应,所以步骤III的离子方程式为:2C+CO2=2C+C,故答案为:正;2C+CO2=2C+C;
    ②I.CO2在碱性条件下得电子生成CH3CH2CH2OH,碳元素从+4价降低到-2价,根据电子守恒和电荷守恒写出电极反应式为:3CO2+18e- +13H2O=CH3CH2CH2OH+18OH-;
    II.c催化剂条件下,CO2电还原的活化能小于H+电还原的活化能,更容易发生CO2的电还原;而催化剂a和b条件下,CO2电还原曲线中a的最大能垒为0.51<b曲线的0.72,a曲线电化学还原更容易。且H+电还原中a曲线最大能垒0.27>b曲线的0.22,综上所述,a催化剂比b催化剂更易发生CO2电还原。因此反应从易到难的顺序为c、a、b,故答案为:c、a、b。

    31.(1)          不变
    (2)     乙醇呈现出蓝色     ab     1.6 ×107     >     CuSO4·3H2O和CuSO4·H2O     38.89%     25°C时Na2CO3·H2O的平衡压强为p(H2O)=706 Pa,低于反应II中平衡压强为p(H2O)=747Pa,且远远超过反应III中平衡压强为p(H2O)=107 Pa,此时反应II的平衡正向移动得比较充分,而反应III的平衡会大幅度逆向移动,从而抑制Na2CO3·H2O的脱水,有利于其保持纯度

    【解析】(1)
    ①钢制管道、参比电极、潮湿土壤构成原电池,参比电极为Cu电极,钢制管道为铁电极,金属性Fe>Cu,则Fe做负极材料,负极的电极反应式为:;
    ②Cu电极为正极,电极反应式为:,CuSO4·5H2O溶解与电解质溶液中,此时硫酸铜溶液的浓度不变;
    (2)
    ①无水CuSO4遇水变为蓝色,则用无水CuSO4检验乙醇中含有微量水的现象是:乙醇变为蓝色;
    ②反应Ⅰ中水合物的质量分数最大,符合条件的线段为ab;
    ③反应Ⅱ中p(H2O)=4000Pa,反应II:CuSO4·3H2O (s) CuSO4·H2O (s) + 2H2O(g)
    列出平衡常数,;
    ④脱水过程为吸热反应,则反应Ⅲ温度升高平衡正向移动,且正反应的总体积增大的反应,则温度越高,压强越大,则p1>p2;
    ⑤c点时固体为CuSO4·3H2O,d点时固体为CuSO4·H2O,则M点时固体为CuSO4·3H2O和CuSO4·H2O;
    M点时水合物中水的质量分数为20%,c点到M点发生的反应为反应Ⅱ,列出三段式如下:

    计算可得转化率为38.89%;
    ⑥25°C时Na2CO3·H2O的平衡压强为p(H2O)=706 Pa,低于反应II中平衡压强为p(H2O)=747Pa,且远远超过反应III中平衡压强为p(H2O)=107 Pa,此时反应II的平衡正向移动得比较充分,而反应III的平衡会大幅度逆向移动,从而抑制Na2CO3·H2O的脱水,有利于其保持纯度。
    32.          温度升高反应速率增大,温度升高催化剂的活性增强          H2SO4     或     HD     提高释放氢气的速率,提高释放出氢气的纯度
    【分析】
    (1)根据元素守恒和电荷守恒书写离子方程式;从温度对反应速率的影响以及温度对催化剂的影响的角度分析。
    (2)该装置为原电池装置,放电时HCOOˉ转化为被氧化,所以左侧为负极,Fe3+转化为Fe2+被还原,所以右侧为正极。
    (3)HCOOH生成HCOOˉ和H+分别与催化剂结合,在催化剂表面HCOOˉ分解生成CO2和Hˉ,之后在催化剂表面Hˉ和第一步产生的H+反应生成H2。
    【详解】
    (1)含有催化剂的KHCO3溶液中通入H2生成HCOOˉ,根据元素守恒和电荷守恒可得离子方程式为:+H2HCOOˉ+H2O;反应温度在40℃~80℃范围内时,随温度升高,活化分子增多,反应速率加快,同时温度升高催化剂的活性增强,所以的催化加氢速率迅速上升;
    (2)①左侧为负极,碱性环境中HCOOˉ失电子被氧化为,根据电荷守恒和元素守恒可得电极反应式为HCOOˉ+2OHˉ-2eˉ= +H2O;电池放电过程中,钾离子移向正极,即右侧,根据图示可知右侧的阴离子为硫酸根,而随着硫酸钾不断被排除,硫酸根逐渐减少,铁离子和亚铁离子进行循环,所以需要补充硫酸根,为增强氧气的氧化性,溶液最好显酸性,则物质A为H2SO4;
    ②根据装置图可知电池放电的本质是HCOOH在碱性环境中被氧气氧化为,根据电子守恒和电荷守恒可得离子方程式为2HCOOH+O2+2OHˉ = 2+2H2O或2HCOOˉ+O2= 2;
    (3)①根据分析可知HCOOD可以产生HCOOˉ和D+,所以最终产物为CO2和HD(Hˉ与D+结合生成);
    ②HCOOK是强电解质,更容易产生HCOOˉ和K+,更快的产生KH,KH可以与水反应生成H2和KOH,生成的KOH可以吸收分解产生的CO2,从而使氢气更纯净,所以具体优点是:提高释放氢气的速率,提高释放出氢气的纯度。
    【点睛】
    第3小题为本题难点,要注意理解图示的HCOOH催化分解的反应机理,首先HCOOH分解生成H+和HCOOˉ,然后HCOOˉ再分解成CO2和Hˉ,Hˉ和H+反应生成氢气。

    相关试卷

    五年2018-2022高考化学真题按知识点分类汇编49-化学反应原理综合题(含解析): 这是一份五年2018-2022高考化学真题按知识点分类汇编49-化学反应原理综合题(含解析),共36页。试卷主要包含了单选题,填空题,原理综合题,工业流程题等内容,欢迎下载使用。

    五年2018-2022高考化学真题按知识点分类汇编46-电解池-电解原理及应用-实验题、原理综合题、工业流程、有机判断(含解析): 这是一份五年2018-2022高考化学真题按知识点分类汇编46-电解池-电解原理及应用-实验题、原理综合题、工业流程、有机判断(含解析),共34页。试卷主要包含了单选题,多选题等内容,欢迎下载使用。

    五年2018-2022高考化学真题按知识点分类汇编45-化学能与电能-化学电源(含解析): 这是一份五年2018-2022高考化学真题按知识点分类汇编45-化学能与电能-化学电源(含解析),共28页。试卷主要包含了单选题,多选题,填空题,原理综合题等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        五年2018-2022高考化学真题按知识点分类汇编44-化学能与电能-原电池原理及应用(含解析)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map