重难点20 简单线性规划问题—2023年高考数学【热点·重点·难点】专练(全国通用)(原卷版)
展开
重难点20 简单线性规划问题
1、如何在直角坐标系中作出可行域:
(1)先作出围成可行域的直线,利用“两点唯一确定一条直线”可选取直线上的两个特殊点(比如坐标轴上的点),以便快速做出直线
(2)如何判断满足不等式的区域位于直线的哪一侧:一条曲线(或直线)将平面分成若干区域,则在同一区域的点,所满足不等式的不等号方向相同,所以可用特殊值法,利用特殊点判断其是否符合不等式,如果符合,则该特殊点所在区域均符合该不等式,具体来说有以下三种情况:
① 竖直线或水平线:可通过点的横(纵)坐标直接进行判断
② 一般直线:可代入点进行判断,若符合不等式,则原点所在区域即为不等式表示区域,否则则为另一半区域。例如:不等式,代入符合不等式,则所表示区域为直线的右下方
③ 过原点的直线:无法代入,可代入坐标轴上的特殊点予以解决,或者利用象限进行判断。例如::直线穿过一、三象限,二、四象限分居直线两侧。考虑第四象限的点,所以必有,所以第四象限所在区域含在表示的区域之中。
(3)在作可行域时要注意边界是否能够取到:对于约束条件(或)边界不能取值时,在图像中边界用虚线表示;对于约束条件(或)边界能取值时,在图像中边界用实线表示
2、利用数形结合寻求最优解的一般步骤
(1)根据约束条件,在平面直角坐标系中作出可行域所代表的区域
(2)确定目标函数在式子中的几何意义,常见的几何意义有:(设为常数)
① 线性表达式——与纵截距相关:例如,则有,从而的取值与动直线的纵截距相关,要注意的符号,若,则的最大值与纵截距最大值相关;若,则的最大值与纵截距最小值相关。
② 分式——与斜率相关(分式):例如:可理解为是可行域中的点与定点连线的斜率。
③ 含平方和——与距离相关:例如:可理解为是可行域中的点与定点距离的平方。
(3)根据的意义寻找最优解,以及的范围(或最值)
随着新课改深入开展,新课标中去掉了线性规划内容,近几年的高考线性规划内容逐步在弱化,但每年也都考有,故2023年线性规划问题考查的可能性依然很大,其侧重于目标函数为线性的规划问题考查,难度为基础题,题型为选择或填空题.
(建议用时:40分钟)
一、单选题
1.设集合则
A.对任意实数a,
B.对任意实数a,(2,1)
C.当且仅当a<0时,(2,1)
D.当且仅当 时,(2,1)
2.设变量满足约束条件,则目标函数的最大值为
A.2 B.3 C.5 D.6
3.若实数x,y满足约束条件,则的最小值是( )
A. B. C. D.
4.若x,y满足约束条件则的最大值是( )
A. B.4 C.8 D.12
5.设x,y满足约束条件,则z=x-y的取值范围是
A.[–3,0] B.[–3,2] C.[0,2] D.[0,3]
6.若实数满足约束条件,则的最大值是
A. B.1
C.10 D.12
7.若实数x,y满足约束条件,则z=x+2y的取值范围是( )
A. B. C. D.
8.若满足约束条件则的最小值为( )
A.18 B.10 C.6 D.4
9.设变量x,y满足约束条件 则目标函数的最大值为
A.6 B.19 C.21 D.45
10.设x,y满足约束条件则z=x+y的最大值为( )
A.0 B.1 C.2 D.3
11.记不等式组表示的平面区域为,命题;命题.给出了四个命题:①;②;③;④,这四个命题中,所有真命题的编号是
A.①③ B.①② C.②③ D.③④
12.已知a>0,x,y满足约束条件,若z=2x+y的最小值为1,则a=
A. B. C.1 D.2
二、填空题
13.若x,y满足约束条件则z=x+7y的最大值为______________.
14.若x,y满足约束条件 ,则z=3x+2y的最大值为_________.
15.若,满足约束条件则的最大值 .
16.某高科技企业生产产品A和产品B需要甲、乙两种新型材料.生产一件产品A需要甲材料1.5 kg,乙材料1 kg,用5个工时;生产一件产品B需要甲材料0.5 kg,乙材料0.3 kg,用3个工时,生产一件产品A的利润为2100元,生产一件产品B的利润为900元.该企业现有甲材料150 kg,乙材料90 kg,则在不超过600个工时的条件下,生产产品A、产品B的利润之和的最大值为______元.
三、解答题
17.电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:
| 连续剧播放时长(分钟) | 广告播放时长(分钟) | 收视人次(万) |
甲 | 70 | 5 | 60 |
乙 | 60 | 5 | 25 |
已知电视台每周安排的甲、乙连续剧的总播放时间不多于600分钟,广告的总播放时间不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用, 表示每周计划播出的甲、乙两套连续剧的次数.
(I)用,列出满足题目条件的数学关系式,并画出相应的平面区域;
(II)问电视台每周播出甲、乙两套连续剧各多少次,才能使收视人次最多?
18.某厂用鲜牛奶在某台设备上生产A,B两种奶制品.生产1吨A产品需鲜牛奶2吨,使用设备1小时,获利1 000元;生产1吨B产品需鲜牛奶1.5吨,使用设备1.5小时,获利1 200元.要求每天B产品的产量不超过A产品产量的2倍,设备每天生产A,B两种产品时间之和不超过12小时.假定每天可获取的鲜牛奶数量W(单位:吨)是一个随机变量,其分布列为
W | 12 | 15 | 18 |
P | 0.3 | 0.5 | 0.2 |
该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z(单位:元)是一个随机变量.
(I)求Z的分布列和均值;
(II)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10 000元的概率.
重难点25 椭圆—2023年高考数学【热点·重点·难点】专练(全国通用)(原卷版): 这是一份重难点25 椭圆—2023年高考数学【热点·重点·难点】专练(全国通用)(原卷版),共4页。试卷主要包含了用定义法求椭圆的标准方程,椭圆的常用性质等内容,欢迎下载使用。
重难点18 数列求和—2023年高考数学【热点·重点·难点】专练(全国通用)(原卷版): 这是一份重难点18 数列求和—2023年高考数学【热点·重点·难点】专练(全国通用)(原卷版),共3页。试卷主要包含了公式法,几种数列求和的常用方法,已知数列的前n项和满足,若数列的通项公式是,则,数列{an}满足的前60项和为等内容,欢迎下载使用。
重难点15 数列的概念与简单表示法—2023年高考数学【热点·重点·难点】专练(全国通用)(原卷版): 这是一份重难点15 数列的概念与简单表示法—2023年高考数学【热点·重点·难点】专练(全国通用)(原卷版),共3页。试卷主要包含了an与Sn的关系,)),已知Sn求an的3个步骤等内容,欢迎下载使用。