重难点28 直线与圆锥曲线的位置关系—2023年高考数学【热点·重点·难点】专练(全国通用)(解析版)
展开
重难点28 直线与圆锥曲线的位置关系
1、直线与圆锥曲线问题的特点:
(1)题目贯穿一至两个核心变量(其余变量均为配角,早晚利用条件消掉),
(2)条件与直线和曲线的交点相关,所以可设,至于坐标是否需要解出,则看题目中的条件,以及坐标的形式是否复杂
(3)通过联立方程消元,可得到关于(或)的二次方程,如果所求的问题与两根的和或乘积有关,则可利用韦达定理进行整体代入,从而不需求出(所谓“设而不求”)
(4)有些题目会涉及到几何条件向解析语言的转换,注重数形几何,注重整体代入。则可简化运算的过程
这几点归纳起来就是“以一个(或两个)核心变量为中心,以交点为两个基本点,坚持韦达定理四个基本公式(,坚持数形结合,坚持整体代入。直至解决解析几何问题“
2、韦达定理:是用二次方程的系数运算来表示两个根的和与乘积,在解析几何中得到广泛使用的原因主要有两个:一是联立方程消元后的二次方程通常含有参数,进而导致直接利用求根公式计算出来的实根形式非常复杂,难以参与后面的运算;二是解析几何的一些问题或是步骤经常与两个根的和与差产生联系。进而在思路上就想利用韦达定理,绕开繁杂的求根结果,通过整体代入的方式得到答案。所以说,解析几何中韦达定理的应用本质上是整体代入的思想,并不是每一道解析题必备的良方。如果二次方程的根易于表示(优先求点,以应对更复杂的运算),或者所求的问题与两根和,乘积无关,则韦达定理毫无用武之地。
3、直线方程的形式:直线的方程可设为两种形式:
(1)斜截式:,此直线不能表示竖直线。联立方程如果消去则此形式比较好用,且斜率在直线方程中能够体现,在用斜截式解决问题时要注意检验斜率不存在的直线是否符合条件
(2),此直线不能表示水平线,但可以表示斜率不存在的直线。经常在联立方程后消去时使用,多用于抛物线(消元后的二次方程形式简单)。此直线不能直接体现斜率,当时,斜率
4、弦长公式:(已知直线上的两点距离)设直线,上两点,所以或
(1)证明:因为在直线上,所以
,代入可得:
同理可证得
(2)弦长公式的适用范围为直线上的任意两点,但如果为直线与曲线的交点(即为曲线上的弦),则(或)可进行变形:,从而可用方程的韦达定理进行整体代入。
5、点差法:这是处理圆锥曲线问题的一种特殊方法,适用于所有圆锥曲线。不妨以椭圆方程为例,设直线与椭圆交于两点,则该两点满足椭圆方程,有:
考虑两个方程左右分别作差,并利用平方差公式进行分解,则可得到两个量之间的联系:
①
②
由等式可知:其中直线的斜率,中点的坐标为,这些要素均在②式中有所体现。所以通过“点差法”可得到关于直线的斜率与中点的联系,从而能够处理涉及到弦与中点问题时。同时由①可得在涉及坐标的平方差问题中也可使用点差法。
直线与椭圆、直线与双曲线、直线与抛物线位置关系仍然是2023年的高考热点。命题角度:(1)定点、定值问题;(2)最值、范围问题;
(建议用时:40分钟)
一、单选题
1.设为抛物线的焦点,过且倾斜角为的直线交于,两点,则
A. B. C. D.
【答案】C
【解析】由题意,得.又因为,故直线AB的方程为,与抛物线联立,得,设,由抛物线定义得,
,选C.
2.已知是双曲线的一个焦点,点在上,为坐标原点,若,则的面积为
A. B. C. D.
【答案】B
【解析】设点,则①.
又,
②.
由①②得,
即,
,
故选B.
3.设B是椭圆的上顶点,点P在C上,则的最大值为( )
A. B. C. D.2
【答案】A
【解析】设点,因为,,所以
,
而,所以当时,的最大值为.
故选:A.
4.设为坐标原点,直线与抛物线C:交于,两点,若,则的焦点坐标为( )
A. B. C. D.
【答案】B
【解析】因为直线与抛物线交于两点,且,
根据抛物线的对称性可以确定,所以,
代入抛物线方程,求得,所以其焦点坐标为,
故选:B.
5.已知是双曲线:上的一点,,是的两个焦点,若,则的取值范围是
A. B. C. D.
【答案】A
【解析】由题知,,所以==,解得,故选A.
6.设F为抛物线C:的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB的面积为
A. B. C. D.
【答案】D
【解析】由题意可知:直线AB的方程为,代入抛物线的方程可得: ,设A、B ,则所求三角形的面积为= ,故选D.
7.(2017新课标全国卷Ⅰ文科)设A,B是椭圆C:长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是
A. B.
C. D.
【答案】A
【解析】当时,焦点在轴上,要使C上存在点M满足,则,即,得;当时,焦点在轴上,要使C上存在点M满足,则,即,得,故的取值范围为,选A.
8.设是双曲线的两个焦点,为坐标原点,点在上且,则的面积为( )
A. B.3 C. D.2
【答案】B
【解析】由已知,不妨设,
则,因为,
所以点在以为直径的圆上,
即是以P为直角顶点的直角三角形,
故,
即,又,
所以,
解得,所以
故选:B
9.设双曲线C:(a>0,b>0)的左、右焦点分别为F1,F2,离心率为.P是C上一点,且F1P⊥F2P.若△PF1F2的面积为4,则a=( )
A.1 B.2 C.4 D.8
【答案】A
【解析】,,根据双曲线的定义可得,
,即,
,,
,即,解得,
故选:A.
10.设抛物线C:y2=4x的焦点为F,过点(–2,0)且斜率为的直线与C交于M,N两点,则=
A.5 B.6 C.7 D.8
【答案】D
【解析】根据题意,过点(–2,0)且斜率为的直线方程为,
与抛物线方程联立,消元整理得:,
解得,又,
所以,
从而可以求得,故选D.
11.过抛物线C:y2=4x的焦点F,且斜率为的直线交C于点M(M在x轴的上方),l为C的准线,点N在l上且MN⊥l,则M到直线NF的距离为( )
A. B. C. D.
【答案】C
【解析】依题意得F(1,0),则直线FM的方程是y=(x-1).由得x=或x=3.
由M在x轴的上方得M(3,),由MN⊥l得|MN|=|MF|=3+1=4
又∠NMF等于直线FM的倾斜角,即∠NMF=60°,因此△MNF是边长为4的等边三角形
点M到直线NF的距离为
故选:C.
12.设为坐标原点,直线与双曲线的两条渐近线分别交于两点,若的面积为8,则的焦距的最小值为( )
A.4 B.8 C.16 D.32
【答案】B
【解析】
双曲线的渐近线方程是
直线与双曲线的两条渐近线分别交于,两点
不妨设为在第一象限,在第四象限
联立,解得
故
联立,解得
故
面积为:
双曲线
其焦距为
当且仅当取等号
的焦距的最小值:
故选:B.
二、填空题
13.已知为椭圆C:的两个焦点,P,Q为C上关于坐标原点对称的两点,且,则四边形的面积为________.
【答案】
【解析】因为为上关于坐标原点对称的两点,
且,所以四边形为矩形,
设,则,
所以,
,即四边形面积等于.
故答案为:.
14.斜率为的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则=________.
【答案】
【解析】∵抛物线的方程为,∴抛物线的焦点F坐标为,
又∵直线AB过焦点F且斜率为,∴直线AB的方程为:
代入抛物线方程消去y并化简得,
解法一:解得
所以
解法二:
设,则,
过分别作准线的垂线,设垂足分别为如图所示.
故答案为:
15.已知直线l与椭圆在第一象限交于A,B两点,l与x轴,y轴分别交于M,N两点,且,则l的方程为___________.
【答案】
【解析】[方法一]:弦中点问题:点差法
令的中点为,因为,所以,
设,,则,,
所以,即
所以,即,设直线,,,
令得,令得,即,,
所以,
即,解得或(舍去),
又,即,解得或(舍去),
所以直线,即;
故答案为:
[方法二]:直线与圆锥曲线相交的常规方法
由题意知,点既为线段的中点又是线段MN的中点,
设,,设直线,,,
则,,,因为,所以
联立直线AB与椭圆方程得消掉y得
其中,
∴AB中点E的横坐标,又,∴
∵,,∴,又,解得m=2
所以直线,即
[方法三]:
令的中点为,因为,所以,
设,,则,,
所以,即
所以,即,设直线,,,
令得,令得,即,,所以,
即,解得或(舍去),
又,即,解得或(舍去),
所以直线,即;
故答案为:
16.已知点P(0,1),椭圆 (m>1)上两点A,B满足,则当m=___________时,点B横坐标的绝对值最大.
【答案】5
【解析】[方法一]:点差法+二次函数性质
设,由得
因为A,B在椭圆上,所以 ,即,与相减得:,所以,
,当且仅当时取最等号,即时,点B横坐标的绝对值最大.
故答案为:5.
[方法二]:【通性通法】设线+韦达定理
由条件知直线的斜率存在,设,直线的方程为,联立得,根据韦达定理得,由知,代入上式解得,所以.此时,又,解得.
[方法三]:直线的参数方程+基本不等式
设直线的参数方程为其中t为参数,为直线的倾斜角,将其代入椭圆方程中化简得,设点A,B对应的参数分别为,则.由韦达定理知,解得,所以,此时,即,代入,解得.
[方法四]:直接硬算求解+二次函数性质
设,因为,所以.
即 ①, ②,
又因为,所以.
不妨设,因此,代入②式可得.化简整理得.
由此可知,当时,上式有最大值16,即点B横坐标的绝对值有最大值2.
所以.
[方法五]:【最优解】仿射变换
如图1,作如下仿射变换,则为一个圆.
根据仿射变换的性质,点B的横坐标的绝对值最大,等价于点的横坐标的绝对值最大,则
.
当时等号成立,根据易得,此时.
[方法六]:中点弦性质的应用
设,由可知,则中点.因为,所以,整理得,由于,则时,,所以.
三、解答题
17.设抛物线的焦点为,过且斜率为的直线与交于,两点,.
(1)求的方程;
(2)求过点,且与的准线相切的圆的方程.
【答案】(1);(2)或.
【解析】(1)[方法一]:【通性通法】焦点弦的弦长公式的应用
由题意得,设直线l的方程为.
设,由得.
,故.
所以.
由题设知,解得(舍去)或.因此l的方程为.
[方法二]:弦长公式的应用
由题意得,设直线l的方程为.
设,则由得.
,由,解得(舍去)或.因此直线l的方程为.
[方法三]:【最优解】焦点弦的弦长公式的应用
设直线l的倾斜角为,则焦点弦,解得,即.因为斜率,所以.
而抛物线焦点为,故直线l的方程为.
[方法四]:直线参数方程中的弦长公式应用
由题意知,可设直线l的参数方程为(t为参数).
代入整理得.
设两根为,则.
由,解得.
因为,所以,因此直线l的参数方程为
故直线l的普通方程为.
[方法五]:【最优解】极坐标方程的应用
以点F为极点,以x轴的正半轴为极轴建立极坐标系,此时抛物线的极坐标方程为.
设,由题意得,解得,即.
所以直线l的方程为.
(2)[方法一]:【最优解】利用圆的几何性质求方程
由(1)得AB的中点坐标为,所以AB的垂直平分线方程为
,即.
设所求圆的圆心坐标为,则
解得或,
因此所求圆的方程为或.
[方法二]:硬算求解
由题意可知,抛物线C的准线为,所求圆与准线相切.
设圆心为,则所求圆的半径为.
由得.
所以,
解得或,
所以,所求圆的方程为或.
18.在平面直角坐标系中,已知点、,点的轨迹为.
(1)求的方程;
(2)设点在直线上,过的两条直线分别交于、两点和,两点,且,求直线的斜率与直线的斜率之和.
【答案】(1);(2).
【解析】(1) 因为,
所以,轨迹是以点、为左、右焦点的双曲线的右支,
设轨迹的方程为,则,可得,,
所以,轨迹的方程为.
(2)[方法一] 【最优解】:直线方程与双曲线方程联立
如图所示,设,
设直线的方程为.
联立,
化简得.
则.
故.
则.
设的方程为,同理.
因为,所以,
化简得,
所以,即.
因为,所以.
[方法二] :参数方程法
设.设直线的倾斜角为,
则其参数方程为,
联立直线方程与曲线C的方程,
可得,
整理得.
设,
由根与系数的关系得.
设直线的倾斜角为,,
同理可得
由,得.
因为,所以.
由题意分析知.所以,
故直线的斜率与直线的斜率之和为0.
[方法三]:利用圆幂定理
因为,由圆幂定理知A,B,P,Q四点共圆.
设,直线的方程为,
直线的方程为,
则二次曲线.
又由,得过A,B,P,Q四点的二次曲线系方程为:
,
整理可得:
,
其中.
由于A,B,P,Q四点共圆,则xy项的系数为0,即.
重难点18 数列求和—2023年高考数学【热点·重点·难点】专练(全国通用)(解析版): 这是一份重难点18 数列求和—2023年高考数学【热点·重点·难点】专练(全国通用)(解析版),共3页。试卷主要包含了公式法,几种数列求和的常用方法,已知数列的前n项和满足,若数列的通项公式是,则,数列{an}满足的前60项和为等内容,欢迎下载使用。
重难点26 双曲线—2023年高考数学【热点·重点·难点】专练(全国通用)(解析版): 这是一份重难点26 双曲线—2023年高考数学【热点·重点·难点】专练(全国通用)(解析版),共10页。试卷主要包含了双曲线的焦点到渐近线的距离为b,焦点三角形的面积等内容,欢迎下载使用。
重难点24 直线与圆—2023年高考数学【热点·重点·难点】专练(全国通用)(解析版): 这是一份重难点24 直线与圆—2023年高考数学【热点·重点·难点】专练(全国通用)(解析版),共13页。试卷主要包含了斜率取值范围的两种求法,求直线方程的两种方法,处理直线方程综合应用的两大策略,弦长的两种求法,圆的切线方程的两种求法等内容,欢迎下载使用。