所属成套资源:2023年中考数学复习之题型专练680道
8. 2023年中考数学复习 解答题专练八 四边形
展开
这是一份8. 2023年中考数学复习 解答题专练八 四边形,共15页。
2023年中考数学复习解答题专练八 四边形1.(2022•烟台中考)如图,在▱ABCD中,DF平分∠ADC,交AB于点F,BE∥DF,交AD的延长线于点E.若∠A=40°,求∠ABE的度数. 2.(2022•攀枝花中考)同学们在探索“多边形的内角和”时,利用了“三角形的内角和”.请你在不直接运用结论“n边形的内角和为(n﹣2)•180°”计算的条件下,利用“一个三角形的内角和等于180°”,结合图形说明:五边形ABCDE的内角和为540°. 3.(2022•徐州中考)如图,在▱ABCD中,点E、F在对角线BD上,且BE=DF.求证:(1)△ABE≌△CDF;(2)四边形AECF是平行四边形. 4.(2022•邵阳中考)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E,F在对角线BD上,且BE=DF,OE=OA.求证:四边形AECF是正方形. 5.(2022•西宁中考)如图,四边形ABCD是菱形,AE⊥BC于点E,AF⊥CD于点F.(1)求证:△ABE≌△ADF;(2)若AE=4,CF=2,求菱形的边长. 6.如图,在平行四边形ABCD中,连接BD,E为线段AD的中点,延长BE与CD的延长线交于点F,连接AF,∠BDF=90°.(1)求证:四边形ABDF是矩形;(2)若AD=5,DF=3,求四边形ABCF的面积S. 7.(2022•山西中考)如图,在矩形ABCD中,AC是对角线.(1)实践与操作:利用尺规作线段AC的垂直平分线,垂足为点O,交边AD于点E,交边BC于点F(要求:尺规作图并保留作图痕迹,不写作法,标明字母).(2)猜想与证明:试猜想线段AE与CF的数量关系,并加以证明. 8.(2022•北京中考)如图,在▱ABCD中,AC,BD交于点O,点E,F在AC上,AE=CF.(1)求证:四边形EBFD是平行四边形;(2)若∠BAC=∠DAC,求证:四边形EBFD是菱形. 9.(2022•青海中考)如图,四边形ABCD为菱形,E为对角线AC上的一个动点(不与点A,C重合),连接DE并延长交射线AB于点F,连接BE.(1)求证:△DCE≌△BCE;(2)求证:∠AFD=∠EBC. 10.(2022•嘉兴中考)小惠自编一题:“如图,在四边形ABCD中,对角线AC,BD交于点O,AC⊥BD,OB=OD.求证:四边形ABCD是菱形”,并将自己的证明过程与同学小洁交流.小惠:证明:∵AC⊥BD,OB=OD,∴AC垂直平分BD.∴AB=AD,CB=CD,∴四边形ABCD是菱形.小洁:这个题目还缺少条件,需要补充一个条件才能证明.若赞同小惠的证法,请在第一个方框内打“√”;若赞成小洁的说法,请你补充一个条件,并证明. 11.(2022•泰州中考)如图,线段DE与AF分别为△ABC的中位线与中线.(1)求证:AF与DE互相平分;(2)当线段AF与BC满足怎样的数量关系时,四边形ADFE为矩形?请说明理由. 12.(2022•扬州中考)如图,在▱ABCD中,BE、DG分别平分∠ABC、∠ADC,交AC于点E、G.(1)求证:BE∥DG,BE=DG;(2)过点E作EF⊥AB,垂足为F.若▱ABCD的周长为56,EF=6,求△ABC的面积. 13.(2022•六盘水中考)如图,在平行四边形ABCD中,AE平分∠BAC,CF平分∠ACD.(1)求证:△ABE≌△CDF;(2)当△ABC满足什么条件时,四边形AECF是矩形?请写出证明过程. 14.(2022•永州中考)如图,BD是平行四边形ABCD的对角线,BF平分∠DBC,交CD于点F.(1)请用尺规作∠ADB的角平分线DE,交AB于点E(要求保留作图痕迹,不写作法);(2)根据图形猜想四边形DEBF为平行四边形.请将下面的证明过程补充完整.证明:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠ADB=∠ .(两直线平行,内错角相等)又∵DE平分∠ADB,BF平分∠DBC,∴∠EDB∠ADB,∠DBF∠DBC.∴∠EDB=∠DBF.∴DE∥ .( )(填推理的依据)又∵四边形ABCD是平行四边形.∴BE∥DF.∴四边形DEBF为平行四边形( )(填推理的依据).15.(2022•青岛中考)如图,在四边形ABCD中,AB∥CD,点E,F在对角线BD上,BE=EF=FD,∠BAF=∠DCE=90°.(1)求证:△ABF≌△CDE;(2)连接AE,CF,已知 (从以下两个条件中选择一个作为已知,填写序号),请判断四边形AECF的形状,并证明你的结论.条件①:∠ABD=30°;条件②:AB=BC.(注:如果选择条件①条件②分别进行解答,按第一个解答计分)
参考答案1.解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A+∠ADC=180°,∵∠A=40°,∴∠ADC=140°,∵DF平分∠ADC,∴∠CDFADC=70°,∴∠AFD=∠CDF=70°,∵DF∥BE,∴∠ABE=∠AFD=70°.2.解:连接AD,AC,∴五边形ABCDE的内角和等于△AED,△ADC,△ABC的内角和,∴五边形ABCDE的内角和=180°×3=540°.3.证明:(1)∵四边形ABCD为平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)由(1)可知,△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴180°﹣∠AEB=180°﹣∠CFD,即∠AEF=∠CFE,∴AE∥CF,∵AE=CF,AE∥CF,∴四边形AECF是平行四边形.4.证明:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是菱形;∵OE=OA=OF,∴OE=OF=OA=OC,即EF=AC,∴菱形AECF是正方形.5.(1)证明:∵四边形ABCD是菱形,∴AB=BC=CD=AD,∠B=∠D,∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD,在△ABE和△ADF中,,∴△ABE≌△ADF(AAS);(2)解:设菱形的边长为x,∵AB=CD=x,CF=2,∴DF=x﹣2,∵△ABE≌△ADF,∴BE=DF=x﹣2,在Rt△ABE中,根据勾股定理得,AE2+BE2=AB2,即42+(x﹣2)2=x2,解得x=5,∴菱形的边长是5.6.(1)证明:∵四边形ABCD是平行四边形,∴BA∥CD,∴∠BAE=∠FDE,∵点E是AD的中点,∴AE=DE,在△BEA和△FED中,,∴△BEA≌△FED(ASA),∴EF=EB,又∵AE=DE,∴四边形ABDF是平行四边形,∵∠BDF=90°.∴四边形ABDF是矩形;(2)解:由(1)得四边形ABDF是矩形,∴∠AFD=90°,AB=DF=3,AF=BD,∴AF4,∴S矩形ABDF=DF•AF=3×4=12,BD=AF=4,∵四边形ABCD是平行四边形,∴CD=AB=3,∴S△BCDBD•CD4×3=6,∴四边形ABCF的面积S=S矩形ABDF+S△BCD=12+6=18,答:四边形ABCF的面积S为18.7.解:(1)如图,(2)AE=CF,证明如下:∵四边形ABCD是矩形,∴AD∥BC,∴∠EAO=∠FCO,∠AEO=∠CFO,∵EF是AC的垂直平分线,∴AO=CO,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴AE=CF.8.证明:(1)在▱ABCD中,OA=OC,OB=OD,∵AE=CF.∴OE=OF,∴四边形EBFD是平行四边形;(2)∵四边形ABCD是平行四边形,∴AB∥DC,∴∠BAC=∠DCA,∵∠BAC=∠DAC,∴∠DCA=∠DAC,∴DA=DC,∴平行四边形ABCD为菱形,∴DB⊥EF,∴平行四边形EBFD是菱形.9.证明:(1)∵四边形ABCD是菱形,∴CD=CB,∠DCE=∠BCE,∵CE=CE,∴△DCE≌△BCE(SAS);(2)∵四边形ABCD是菱形,∴DC∥AF,∴∠CDF=∠AFD,∵△DCE≌△BCE,∴∠CDF=∠EBC,∴∠AFD=∠EBC.10.解:赞成小洁的说法,补充条件:OA=OC,证明如下:∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,又∵AC⊥BD,∴平行四边形ABCD是菱形.11.(1)证明:∵点D是AB的中点,∴ADAB,∵点E是AC的中点,点F是BC的中点,∴EF是△ABC的中位线,∴EF∥AB,EFAB,∴EF=AD,∴四边形ADFE是平行四边形,∴AF与DE互相平分;(2)解:当AFBC时,四边形ADFE为矩形,理由:∵线段DE为△ABC的中位线,∴DEBC,∵AFBC,∴AF=DE,由(1)得:四边形ADFE是平行四边形,∴四边形ADFE为矩形.12.(1)证明:在▱ABCD中,AD∥BC,∠ABC=∠ADC,∴∠DAC=∠BCA,AD=BC,AB=CD,∵BE、DG分别平分∠ABC、∠ADC,∴∠ADG=∠CBE,∵∠DGE=∠DAC+∠ADG,∠BEG=∠BCA+∠CBE,∴∠DGE=∠BEG,∴BE∥DG;在△ADG和△CBE中,,∴△ADG≌△CBE(ASA),∴BE=DG;(2)解:过E点作EH⊥BC于H,∵BE平分∠ABC,EF⊥AB,∴EH=EF=6,∵▱ABCD的周长为56,∴AB+BC=28,∴S△ABC =84.13.(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,AB∥CD,∴∠BAC=∠ACD,∵AE平分∠BAC、CF平分∠ACD,∴∠BAE=∠CAE∠BAC,∠DCF=∠ACF∠ACD,∴∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(ASA);(2)解:当△ABC满足AB=AC时,四边形AECF是矩形,理由如下:由(1)可知,∠CAE=∠ACF,∴AE∥CF,∵△ABE≌△CDF,∴AE=CF,∴四边形AECF是平行四边形,又∵AB=AC,AE平分∠BAC,∴AE⊥BC,∴∠AEC=90°,∴平行四边形AECF是矩形.14.解:(1)作图如下:DE即为所求;(2)证明:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠ADB=∠DBC.(两直线平行,内错角相等)又∵DE平分∠ADB,BF平分∠DBC,∴∠EDB∠ADB,∠DBF∠DBC.∴∠EDB=∠DBF.∴DE∥BF.(内错角相等,两直线平行)(填推理的依据)又∵四边形ABCD是平行四边形.∴BE∥DF.∴四边形DEBF为平行四边形(两组对边分别平行的四边形是平行四边形)(填推理的依据).故答案为:DBC,BF,内错角相等,两直线平行,两组对边分别平行的四边形是平行四边形.15.(1)证明:∵BE=FD,∴BE+EF=FD+EF,∴BF=DE,∵AB∥CD,∴∠ABF=∠CDE,在△ABF和△CDE中, ∴△ABF≌△CDE(AAS);(2)解:若选择条件①:四边形AECF是菱形,理由如下:由(1)得,△ABF≌△CDE,∴AF=CE,∠AFB=∠CED,∴AF∥CE,∴四边形AECF是平行四边形,∵∠BAF=90°,BE=EF,∴AE,∵∠BAF=90°,∠ABD=30°,∴AF,∴AE=AF,∴▱AECF是菱形;若选择条件②:四边形AECF是菱形,理由如下:连接AC交BD于点O,由①得:△ABF≌△CDE,∴AF=CE,∠AFB=∠CED,∴AF∥CE,∴四边形AECF是平行四边形,∴AO=CO,∵AB=BC,∴BO⊥AC,即EF⊥AC,∴▱AECF是菱形.故答案为:①(答案不唯一).声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2023/1/8 2:49:44;用户:单静怡;邮箱:zhaoxia39@xyh.com;学号:39428212
相关试卷
这是一份11. 2023年中考数学复习 解答题专练十一 尺规作图,共13页。
这是一份9. 2023年中考数学复习 解答题专练九 圆,共21页。
这是一份1. 2023年中考数学复习 解答题专练一 数与式,共10页。