北师大版九年级下册6 利用三角函数测高课时训练
展开2020-2021学年九年级数学下册尖子生同步培优题典【北师大版】
专题1.7利用三角函数测高
姓名:__________________ 班级:______________ 得分:_________________
注意事项:
本试卷满分100分,试题共24题,其中选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.
一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.
1.(2020•石家庄二模)如图,嘉琪在一座桥的附近试飞一架小型无人机,为了测量无人机飞行的高度AD,嘉琪通过操控装置测得无人机俯视桥头B,C的俯角分别为∠EAB=60°和∠EAC=30°,且D、B、C在同一水平线上.已知桥BC=30米,则无人机的飞行高度AD=( )
A.15米 B.15米 C.(1515)米 D.(1515)米
2.(2020•深圳模拟)如图所示,从一热气球的探测器A点,看一栋高楼顶部B点的仰角为30°,看这栋高楼底部C点的俯角为60°,若热气球与高楼的水平距离为30m,则这栋高楼高度是( )
A.60m B.40m C.30m D.60m
3.(2020春•南岸区校级月考)如图所示,林克想测量一座传送塔的高度,但是塔周围有怪物无法接近.于是他先在传送塔周围的空地C处的地面上水平放置了一个小平面镜,然后他沿着BC方向移动,当移动到点E时.他刚好在小平面镜内看到这座传送塔的顶端A的像,此时,测得顶端A的仰角为32°,CE=2米,林克眼睛与地面的距离DE=1.6米,已知点B、C、E在同一水平直线上,且DE、AB均垂直于BE,若小平面镜的大小忽略不计,则这座传送塔的高度AB是( )米.(参考数据:sin32°≈0.53,cos32°≈0.85,tan32°≈0.64)
A.14.4 B.15.4 C.16.2 D.17.5
4.(2020春•北碚区校级月考)学校某数学兴趣小组想测学校旗杆高度如图,明明在稻香园一楼A点测得旗杆顶点F仰角为45°,在稻香园二楼B点测得点F的仰角为37°.明明从A点朝旗杆方向步行4米到C点,沿坡度i=1:3的台阶走到点D,再向前走5米到旗杆底部E,已知稻香园AB高度为4.5米,则旗杆EF的高度约为( )(参考数据:sin37°=0.6,cos37°=0.8,tan37°=0.75)
A.13.5米 B.15米 C.16.5米 D.18米
5.(2020•渝中区校级三模)如图所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角是27°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°,若斜坡AF的坡度i=1:,则大树的高度为( )(结果保留整数,参考数据:sin27°≈0.45,cos27°≈0.89,tan27°≈0.5,sin48°≈0.74,cos48°≈0.67,tan48°≈1.1,1.7)
A.8米 B.9米 C.10米 D.11米
6.(2020•渝中区校级二模)保利观澜旁边有一望江公园,公园里有一文峰塔,工程人员在与塔底中心的D同一水平线的A处,测得AD=20米,沿坡度i=0.75的斜坡AB走到B点,测得塔顶E仰角为37°,再沿水平方向走20米到C处,测得塔顶E的仰角为22°,则塔高DE为( )米.(结果精确到十分位)(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,)
A.18.3米 B.19.3米 C.20米 D.21.2米
7.(2020•大东区二模)小明同学在校外实践活动中对一座大桥开展测量活动.如图,在桥外一点A测得大桥主架与水面的交汇点C的俯角为α,大桥主架的顶端D的仰角为β,已知测量点与大桥主架的水平距离AB=m,则此时大桥主架顶端离水面的高CD为( )
A.msinα+msinβ B.mcosα+mcosβ
C.mtanα+mtanβ D.
8.(2020•沙坪坝区校级一模)碧津公园坐落在江北机场旁,它是一个风景秀丽、优美如画的公园.园中的碧津塔是一座八角塔,每个角挂有一个风铃,被评为重庆市公园最美景点.重庆一中某数学兴趣小组,想测量碧津塔的高度,他们在点C处测得碧津塔顶部A处的仰角为45°,再沿着坡度为i=1:2.4的斜坡CD向上走了5.2米到达点D,此时测得碧津塔顶部A的仰角为37°,碧津塔AB所在平台高度EF为0.8米.A、B、C、D、E、F在同一平面内,则碧津塔AB的高约为( )米(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)
A.20.8 B.21.6 C.23.2 D.24
9.(2020春•沙坪坝区校级月考)如图,小刚家在甲楼,他想利用最近所学知识测量对面的乙楼的高度,小刚在甲楼楼底B点测得乙楼楼顶C点的仰角为45°,当他爬上楼顶,在A点处测得乙楼D点的仰角为30°.若AB=10m,CD=6m,则乙楼的高度CE为( )m.(参考数据:1.41,1.73,精确到0.1m.)
A.21.8 B.37.6 C.37.8 D.38.2
10.(2020秋•沙坪坝区校级月考)如图,学校某数学兴趣小组想测量操场对面旗杆AB的高度,他们在C点测得旗杆顶部A的仰角为35°,再沿着坡度为3:4的楼梯向下走了3.5米到达D处,再继续向旗杆方向走了15米到达E处,在E处测得旗杆顶部A的仰角为65°,已知旗杆AB所在平台BF的高度为3.5米,则旗杆的高度AB为( )(结果精确到0.1,参考数据:tan35°≈0.7,tan65°≈2.1).
A.19.8米 B.19.7米 C.18.3米 D.16.2米
二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上
11.(2020•兴庆区校级一模)如图,小明为测量大树MN的高度,在点A处测得大树顶端M的仰角是30°,沿NA的方向后退50米到达点B,测得大树顶端M的仰角是15°,A,B,N在同一水平线上,若小明的身高忽略不计,则大树高约为 米.
12.(2020•泰安二模)如图,某无人机兴趣小组在操场上开展活动,此时无人机在离地面30米的D处,无人机测得操控者A的俯角为30°,测得点C处的俯角为45°.又经过人工测量操控者A和教学楼BC距离为57米,则教学楼BC的高度为 .(点A,B,C,D都在同一平面上,结果保留根号)
13.(2020•海门市一模)如图,在数学活动课中,小东为了测量校园内旗杆AB的高度,站在教学楼的O处测得旗杆底端B的俯角为30°,测得旗杆顶端A的仰角为45°,若旗杆与教学楼的距离为12m,则旗杆AB的高度是 m.(结果保留根号)
14.(2020•宁波模拟)某数学兴趣小组为测量河对岸树AB的高,在河岸边选择一点C.从C处测得树梢A的仰角为45°,沿BC方向后退10米到点D,再次测得树梢A的仰角为30°,则树高为 米.(结果精确到0.1米,参考数据:1.414,1.732)
15.(2020春•太原期中)如图,小亮为了测量校园里教学楼AB的高度,他站在离教学楼30m的C处仰望教学楼顶部A,仰角为30°.已知小亮的高度是1.6m,则教学楼的高度约为 1.7,结果精确到0.1).
16.(2020•闵行区二模)七宝琉璃玲珑塔(简称七宝塔),位于上海市七宝古镇的七宝教寺内,塔高47米,共7层.学校老师组织学生利用无人机实地勘测,如果无人机在飞行的某一高度时传回数据,测得塔顶的仰角为60°,塔底的俯角为45°,那么此时无人机距离地面的高度为 米.(结果保留根号)
17.(2020•镇平县模拟)如图,某地修建高速公路,要从A地向B地修一条隧道(点A、B在同一水平面上)为了测量A、B两地之间的距离,一架直升飞机从A地出发,垂直上升800米到达C处,在C处观察B地的俯角为α,则A、B两地之间的距离为 米.
18.(2020春•新泰市期中)如图,某建筑物的顶部有一块标识牌CD,小明在斜坡上B处测得标识牌顶部C的仰角为45°,沿斜坡走下来,在地面A处测得标识牌底部D的仰角为60°,已知斜坡AB的坡角为30°,AB=AE=10米.则标识牌CD的高度是 米.
三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)
19.(2020•新昌县校级模拟)如图,某学校体育场看台的顶端C到地面的垂直距离CD为2m,看台所在斜坡CM的坡比i=1:3,在点C处测得旗杆顶点A的仰角为30°,在点M处测得旗杆顶点A的仰角为60°,且B,M,D三点在同一水平线上.
(1)求DM的长.
(2)求旗杆AB的高度.(结果保留根号)
20.(2020春•辉南县校级月考)如图,已知线段AB、CD分别表示甲、乙两栋楼的高,AB⊥BD,CD⊥BD,甲楼的高AB=24米.从甲楼顶部A处测得乙楼顶部C的仰角α=30°,测得乙楼底部D的俯角β=60°.求乙楼的高CD.
21.(2020春•亭湖区校级月考)如图,随着社会经济的发展,人们的环境保护意识也在逐步增强.某社区设立了“保护环境爱我地球“的宣传牌,已知立杆AB的高度是4m,从地面上某处D点测得宣传牌顶端C和底端B点的仰角分别是62°和45°、求宜传牌的高度BC的长.(精确到0.1m,参考数据:sin62°=0.83,cos62°=0.47,tan62°=1.88)
22.(2020春•吴兴区校级期中)第十一届全国少数民族传统体育运动会于2019年9月8日至16日在郑州举行,据了解,该赛事每四年举办一届,是我国规格最高、规模最大的综合性民族体育盛会,其中,花炮、押加、民族式摔跤三个项目的比赛在郑州大学主校区进行.如图,钟楼是郑州大学主校区标志性建筑物之一,是郑大的“第一高度”,寓意来自五湖四海的郑大人的团结和凝聚.小刚站在钟楼前C处测得钟楼顶A的仰角为53°,小强站在对面的教学楼三楼上的D处测得钟楼顶A的仰角为45°,此时,两人的水平距离EC为4m,已知教学楼三楼所在的高度为10m,根据测得的数据,计算钟楼AB的高度.
(参考数据:sin53°,cos53°,tan53°)
23.(2020•安宁区校级模拟)兰州白塔山山势起伏,山中白塔七级八面,上有绿项,下筑圆基,几经强烈地震仍屹立未动,显示了我国古代劳动人民在建筑艺术上的智慧与才能.
问题提出:如何测量白塔的高MN.
方案设计:九年级三班的白亮同学去测量白塔的高,如图,他在点A处测得塔尖M的仰角是30°,向前走了50米到达点B处,又测得塔尖M的仰角是60°.
问题解决:根据上述方案和数据,求白塔的高度MN(结果精确到1m,参考数据:1.73).
24.(2020•中原区校级模拟)某数学兴趣小组学过锐角三角函数后,计划测量中原福塔的总高度.如图所示,在B处测得福塔主体建筑顶点A的仰角为45°,福塔顶部桅杆天线AD高120m,再沿CB方向前进20m到达E处,测得桅杆天线顶部D的仰角为53.4°.求中原福塔CD的总高度.(结果精确到1m.参考数据:sin53.4°≈0.803,cos53.4°≈0.596,tan53.4°≈1.346)
初中1 圆课时训练: 这是一份初中1 圆课时训练,文件包含2023年九年级数学下册尖子生同步培优题典专题31圆-老师版docx、2023年九年级数学下册尖子生同步培优题典专题31圆-学生版docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。
初中数学北师大版九年级下册5 三角函数的应用课时作业: 这是一份初中数学北师大版九年级下册5 三角函数的应用课时作业,文件包含2023年九年级数学下册尖子生同步培优题典专题17三角函数的应用坡度坡角问题-重难点培优-老师版docx、2023年九年级数学下册尖子生同步培优题典专题17三角函数的应用坡度坡角问题-重难点培优-学生版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。
初中数学北师大版九年级下册7 切线长定理巩固练习: 这是一份初中数学北师大版九年级下册7 切线长定理巩固练习,文件包含专题37切线的性质与判定-九年级数学下册尖子生同步培优题典解析版北师大版docx、专题37切线的性质与判定-九年级数学下册尖子生同步培优题典原卷版北师大版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。