初中数学华师大版七年级下册7.4 实践与探索精品达标测试
展开华师大版数学七年级下册课时练习
7.4《实践与探索》
一 、选择题
1.端午节时,王老师用72元钱买了荷包和五彩绳共20个,其中荷包每个4元,五彩绳每个3元,设王老师购买荷包x个,五彩绳y个,根据题意,下列列出方程组正确的是( ).
A. B. C. D.
2.小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2 kg,求小亮妈妈两种水果各买了多少千克?设小亮妈妈买了甲种水果x kg,乙种水果y kg,则可列方程组为( )
A. B. C. D.
3.如图,设他们中有x个成人,y个儿童根据图中的对话可得方程组( )
A. B. C. D.
4.如图,用10块相同的长方形纸板拼成一个矩形,设长方形纸板的长和宽分别为xcm和ycm,则依题意列方程式组正确的是( )
5.为了绿化校园,30名学生共种78棵树苗.其中男生每人种3棵,女生每人种2棵,该班男生有x人,女生有y人.根据题意,所列方程组正确的是( )
A. B. C. D.
6.已知甲、乙两数的和是7,甲数是乙数的2倍.设甲数为x,乙数为y,根据题意,列方程组正确的是( )
A. B. C. D.
7.根据以下对话,可以求得小红所买的笔和笔记本的价格分别是( )
A.0.8元/支,2.6元/本 B.0.8元/支,3.6元/本
C.1.2元/支,2.6元/本 D.1.2元/支,3.6元/本
8.为了改善全县中、小学办学条件,计划集中采购一批电子白板和投影机,已知购买2块电子白板比购买3台投影机多4000元,购买4块电子白板和3台投影机共需44000元,则购买一块电子白板和一台投影机分别需要( )
A.4000元,8000元 B.8000元,4000元
C.14000元,8000元 D.10000元,12000元
二 、填空题
9.某班有40名同学去看演出,购买甲、乙两种票共用去370元,其中甲种票每张10元,乙种票每张8元.设购买了甲种票x张,乙种票y张,由此可列出方程组:__________.
10.某学校要购买电脑,A型电脑每台5000元,B型电脑每台3000元,购买10台电脑共花费34000元.设购买A型电脑x台,购买B型电脑y台,则根据题意可列方程组为 .
11.某班有40名同学去看演出,购买甲、乙两种票共用去370元,其中甲种票每张10元,乙种票每张8元.设购买了甲种票x张,乙种票y张,由此可列出方程组: .
12.端午节前夕,某超市用1680元购进A,B两种商品共60件,其中A种商品每件24元,B种商品每件36元,设购买A种商品x件,B种商品y件,依题意列出的方程组是 .
13.我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hu,是古代的一种容量单位).1个大桶加上5个小桶可以盛酒2斛,问1个大桶、一个小桶分别可以盛酒多少斛?若设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意,可列方程组为 .
14.某班组织学生去看戏剧表演.老师派班长先去购票,已知甲票每张10元,乙票每张8元.班长带去350元,买了36张票,找回14元.设班长甲票买了x张,乙票买了y张,则x:y= .
三 、解答题
15.已知A,B两件服装的成本共500元,服装店老板分别以30%和20%的利润率定价后进行销售,该服装店共获利130元,问A,B两件服装的成本各是多少元?
16.在某体育用品商店,购买30根跳绳和60个毽子共用720元,购买10根跳绳和50个题子共用360元.
(1)跳绳,键子的单价各是多少元?
(2)该店在“五▪四”青年节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个键子只需1800元.该店的商品按原价的几折销售?
17.某镇水库的可用水量为12 000万m3,假设年降水量不变,能维持该镇16万人20年的用水量.实施城市化建设,新迁入4万人后,水库只够维持居民15年的用水量.
(1)问:年降水量为多少万立方米?每人年平均用水量多少立方米?
(2)政府号召节约用水,希望将水库的保用年限提高到25年,则该镇居民人均每年需节约多少立方米才能实现目标?
18.某服装店用4400元购进A,B两种新式服装,按标价售出后可获得毛利润2800元(毛利润=售价﹣进价),这两种服装的进价,标价如表所示.
类型价格 | A型 | B型 |
进价(元/件) | 60 | 100 |
标价(元/件) | 100 | 160 |
(1)请利用二元一次方程组求这两种服装各购进的件数;
(2)如果A种服装按标价的9折出售,B种服装按标价的8折出售,那么这批服装全部售完后,服装店比按标价出售少收入多少元?
19.随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x元/公里计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如表:
| 时间(分钟) | 里程数(公里) | 车费(元) |
小明 | 8 | 8 | 12 |
小刚 | 12 | 10 | 16 |
(1)求x,y的值;
(2)如果小华也用该打车方式,打车行驶了11公里,用了14分钟,那么小华的打车总费用为多少?
20.已知:用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.
根据以上信息,解答下列问题:
(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?
(2)请你帮该物流公司设计租车方案;
(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.
参考答案
1.B
2.A
3.C
4.A
5.D
6.A
7.D
8.B
9.答案为:
10.答案为:.
11.答案为:.
12.答案为:.
13.答案为:.
14.答案为:2
15.解:设A服装成本为x元,B服装成本y元,由题意得:
,解得:,
答:A服装成本为300元,B服装成本200元.
16.解:(1)设跳绳的单价为x元,键子的单价为y元,
由题意得,解得,
答:跳绳的单价为16元,键子的单价为4元.
(2)设店的商品按原价的y折销售
(16+4)××100=1800,解得y=9,
答:设店的商品按原价的9折销售.
17.解:(1)设年降水量为x万m3,每人每年平均用水量为y m3,由题意得
解得
答:年降水量为200万m3,每人年平均用水量为50 m3;
(2)设该城镇居民年平均用水量为z m3才能实现目标,由题意得
12 000+25×200=20×25z,
解得z=34,则50-34=16(m3).
答:该镇居民人均每年需要节约16 m3的水才能实现目标.
18.解:(1)设购进A种服装x件,购进B种服装y件,
根据题意得:,
解得:.
答:购进A种服装40件,购进B种服装20件.
(2)40×100×(1﹣0.9)+20×160×(1﹣0.8)=1040(元).
答:服装店比按标价出售少收入1040元.
19.解:(1)根据题意得:
,解得:.
(2)11×1+14×=18(元).
答:小华的打车总费用是18元.
20.解:(1)设1辆A型车和1辆B型车都装满货物一次可分别运货x吨、y吨.根据题意,得
答:1辆A型车和1辆B型车都装满货物一次可分别运货3吨、4吨.
(2)根据题意可得3a+4b=31,.
使a,b都为整数的情况共有a=1,b=7或a=5,b=4或a=9,b=1三种情况,
故租车方案分别为
①A型车1辆,B型车7辆;②A型车5辆,B型车4辆;
③A型车9辆,B型车1辆.
(3)方案①花费为100×1+120×7=940(元);
方案②花费为100×5+120×4=980(元);
方案③花费为100×9+120×1=1 020(元).
即方案①最省钱,即租用A型车1辆,B型车7辆,最少租车费用为940元.
初中数学华师大版八年级下册17.5实践与探索优秀课后练习题: 这是一份初中数学华师大版八年级下册17.5实践与探索优秀课后练习题,共9页。试卷主要包含了5《实践与探索》,12x,x>0等内容,欢迎下载使用。
初中数学华师大版七年级下册6.3 实践与探索精品精练: 这是一份初中数学华师大版七年级下册6.3 实践与探索精品精练,共6页。试卷主要包含了3《实践与探索》等内容,欢迎下载使用。
数学七年级下册7.4 实践与探索优秀综合训练题: 这是一份数学七年级下册7.4 实践与探索优秀综合训练题,共5页。试卷主要包含了4《实践与探索》课时练习等内容,欢迎下载使用。