华师大版数学八年级下册课时练习20.3《数据的离散程度》(含答案)
展开华师大版数学八年级下册课时练习
20.3《数据的离散程度》
一 、选择题
1.在﹣2,1,2,1,4,6中正确的是( )
A.平均数3 B.众数是﹣2 C.中位数是1 D.极差为8
2.在一次数学测试中,某学习小组6名同学的成绩(单位:分)分别为65,82,86,82,76,95.关于这组数据,下列说法错误的是( )
A.平均数是82 B.中位数是82 C.极差是30 D.众数是82
3.在中小学经典诵读比赛中,10个参赛单位成绩统计如图所示,对于这10个参赛单位的成绩,下列说法中错误的是( )
A.众数是90 B.平均数是90 C.中位数是90 D.极差是15
4.为节能减排,郑州市政府鼓励居民节约用电,为了解居民用电情况,在某小区随机抽查了20户家庭的月用电量,结果如表:
月用电量(度) | 4 | 5 | 6 | 8 | 9 |
户数 | 2 | 5 | 7 | 4 | 1 |
则关于这20户家庭的月用电量,下列说法正确的是( )
A.中位数是5度 B.众数是6度 C.平均数是6度 D.极差是4度
5.一组数据1,2,1,4的方差为( )
A.1 B.1.5 C.2 D.2.5
6.为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位:℃):﹣6,﹣3,x,2,﹣1,3.若这组数据的中位数是﹣1,则下列结论错误的是( )
A.方差是8 B.极差是9 C.众数是﹣1 D.平均数是﹣1
7.某校八年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛.各参赛选手成绩的数据分析如下表所示,则以下判断错误的是( )
班 级 | 平均数 | 中位数 | 众数 | 方差 |
八(1)班 | 94 | 93 | 94 | 12 |
八(2)班 | 95 | 95.5 | 93 | 8.4 |
A.八(2)班的总分高于八(1)班
B.八(2)班的成绩比八(1)班稳定
C.八(2)班的成绩集中在中上游
D.两个班的最高分在八(2)班
8.在一次训练中,甲、乙、丙三人各射击10次的成绩(单位:环)如图,在这三人中,此次射击成绩最稳定的是( )
A.甲 B.乙 C.丙 D.无法判断
二 、填空题
9.已知一组数据1,2,3,4,5的方差为2,则另一组数据11,12,13,14,15的方差为_______.
10.甲、乙两人进行射击测试,每人射击10次.射击成绩的平均数都是8.5环,方差分别是:S甲2=3,S乙2=3.5.则射击成绩比较稳定的是 (填“甲”或“乙“).
11.某校射击队从甲、乙、丙、丁四人中选拔一人参加市运动会射击比赛.在选拔赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示.
请你根据表中数据选一人参加比赛,最合适的人选是 .
12.某校准备从甲、乙、丙、丁四个科创小组中选出一组,参加区青少年科技创新大赛,表格反映的是各组平时成绩的平均数(单位:分)及方差S2,如果要选出一个成绩较好且状态稳定的组去参赛,那么应选的组是 .
13.一组数据1、2、3、4、5的方差为S12,另一组数据6、7、8、9、10的方差为S22,那么S12 S22(填“>”、“=”或“<”).
14.有一组数据:3,a,4,6,7.它们的平均数是5,那么这组数据的方差是 .
三 、解答题
15.某班为确定参加学校投篮比赛的任选,在A、B两位投篮高手间进行了6次投篮比赛,每人每次投10个球,将他们每次投中的个数绘制成如图所示的折线统计图.[来源:学*科*网]
(1)根据图中所给信息填写下表:
(2)如果这个班只能在A、B之间选派一名学生参赛,从投篮稳定性考虑应该选派谁?请你利用学过的统计量对问题进行分析说明.
16.“知识改变命运,科技繁荣祖国.”为提升中小学生的科技素养,我区每年都要举办中小学科技节.为迎接比赛,某校进行了宣传动员并公布了相关项目如下:A﹣﹣杆身橡筋动力模型;B﹣﹣直升橡筋动力模型;C﹣﹣空轿橡筋动力模型.右图为该校报名参加科技比赛的学生人数统计图.
(1)该校报名参加B项目学生人数是_______人;
(2)该校报名参加C项目学生人数所在扇形的圆心角的度数是_______°;
(3)为确定参加区科技节的学生人选,该校在集训后进行了校内选拔赛,最后一轮复赛,决定在甲、乙2名候选人中选出1人代表学校参加区科技节B项目的比赛,每人进行了4次试飞,对照一定的标准,判分如下:甲:80,70,100,50;乙:75,80,75,70.如果你是教练,你打算安排谁代表学校参赛?请说明理由.
17.某校为了了解初中学生每天的睡眠时间(单位为小时),随机调查了该校的部分初中学生,根据调查结果,绘制出如下统计图.
请根据相关信息,解答下列问题:
(1)本次接受调查的初中学生人数为___________人,扇形统计图中的m=________,条形统计图中的n=_____;
(2)所调查的初中学生每天睡眠时间的众数是____________,方差是___________;
(3)该校共有1600名初中学生,根据样本数据,估计该校初中学生每天睡眠时间不足8小时的人数.
18.某校举办了一次成语知识竞赛,满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀,这次竞赛中,甲、乙两组学生成绩分布的折线统计图和成绩统计分析表如下所示.
(1)求出下列成绩统计分析表中a,b的值:
组别 | 平均分 | 中位数 | 方差 | 合格率 | 优秀率 |
甲组 | 6.8 | a | 3.76 | 90% | 30% |
乙组 | b | 7.5 | 1.96 | 80% | 20% |
(2)小英同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上面表格判断,小英是甲、乙哪个组的学生;
(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你写出两条支持乙组同学观点的理由.
19.九(3)班为了组队参加学校举行的“五水共治”知识竞赛,在班里选取了若干名学生,分成人数相同的甲、乙两组,进行了四次“五水共治”模拟竞赛,成绩优秀的人数和优秀率分别绘制成如图统计图.
①②
根据统计图,回答下列问题:
(1)第三次成绩的优秀率是多少?并将条形统计图补充完整;
(2)已求得甲组成绩优秀人数的平均数甲组=7,方差S=1.5,请通过计算说明,哪一组成绩优秀的人数较稳定?
20.甲、乙两名队员参加射击训练,各自射击10次的成绩分别被制成下列统计图.
根据以上信息,整理分析数据如下:
队员 | 平均/环 | 中位数/环 | 众数/环 |
甲 | 7 | b | 7 |
乙 | a | 7.5 | c |
(1)写出表格中的a、b、c的值;
(2)已知乙队员射击成绩的方差为4.2,计算出甲队员射击成绩的方差,并判断哪个队员的射击成绩较稳定.
参考答案
1.D
2.A
3.B
4.B
5.A.
6.D.
7.B.
8.B.
9.答案为:2.
10.答案为:甲;
11.答案为:丁;
12.答案为:丙.
13.答案为:=.
14.答案为:2.
15.解:(1)A成绩的平均数为(9+10+4+3+9+7)=7;众数为9;
B成绩排序后为6,7,7,7,7,8,故中位数为7;
故答案为:7,9,7;
(2)= [(7﹣9)2+(7﹣10)2+(7﹣4)2+(7﹣3)2+(7﹣9)2+(7﹣7)2]=7;
= [(7﹣7)2+(7﹣7)2+(7﹣8)2+(7﹣7)2+(7﹣6)2+(7﹣7)2]=;
从方差看,B的方差小,所以B的成绩更稳定,从投篮稳定性考虑应该选派B.
16.解:(1)∵参加科技比赛的总人数是6÷25%=24,
∴报名参加B项目学生人数是24×41.67%=10,
故答案为10;
(2)该校报名参加C项目学生人数所在扇形的圆心角的度数是:
360°×(1﹣25%﹣41.67%)=120°,
(3)∵甲的平均数=乙的平均数=75,
∴S2甲=[(80﹣75)2+(70﹣75)2+(100﹣75)2+(50﹣75)2]=325,
S2乙=[(75﹣75)2+(80﹣75)2+(75﹣75)2+(70﹣75)2]=12.5,
∵S2甲>S2乙,∴选乙.
17.解:(1)由图表中的数据可得:8÷20%=40人,
10÷40×100%=25%,即m=25,40×37.5%=15人,即n=15,
故答案为:40;25;15;
(2)由条形统计图可得:
∵睡眠时间诶7h的人数为15人,最多,
∴众数是:7,平均数是:7,方差是1.15,
(3)1080人,
∴该校初中学生每天睡眠时间不足8小时的人数为1080人.
18.解:(1)由折线统计图可知,甲组成绩从小到大排列为:
3,6,6,6,6,6,7,9,9,10,
∴a=6,b=7.2.
(2)∵甲组的中位数为6,乙组的中位数为7.5,而小英的成绩位于小组中上游,
∴小英属于甲组学生.
(3)①乙组的平均分高于甲组,即乙组的总体平均水平高;
②乙组的方差比甲组小,即乙组的成绩比甲组的成绩稳定.
19.解:(1)11÷55%=20(人),×100%=65%,
所以第三次成绩的优秀率是65%.
条形统计图补充如答图所示,
(2)乙组==7,S=[(6-7)2+(8-7)2+(5-7)2+(9-7)2]=2.5,
∵S<S,
∴甲组成绩优秀的人数较稳定.
20.解:(1)a=(3+6+4+8+7+8+7+8+10+9)=7,b=7,c=8;
(2)S甲2=×[(5﹣7)2×1+(6﹣7)2×2+(7﹣7)2×4+(8﹣7)2×2+(9﹣7)2×1]=1.2,
则S甲2<S乙2,
∴甲队员的射击成绩较稳定.