第7章 锐角三角函数【单元提升卷】-九年级数学考试满分全攻略(苏科版)
展开第7章 锐角三角函数【单元提升卷】(苏科版)
(满分120分,完卷时间100分钟)
注意事项:
1.本试卷分选择题、填空题、解答题三部分。答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
一、单选题(每题3分,共30分)
1.一个人从山下沿30°角的坡路登上山顶,共走了500m,那么这山的高度是( )m.
A.230 B.240 C.250 D.260
2.如图,为了测量河两岸、两点的距离,在与垂直的方向点处测得,,那么等于( )
A. B. C. D.
3.斜坡的倾斜角为α,一辆汽车沿这个斜坡前进了500米,则它上升的高度是( )
A.500sinα米 B.米 C.500cosα米 D.米
4.如图,小敏同学想测量一棵大树的高度,她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m,测得仰角为60°.已知小敏同学身高(AB)为1.6m,则这棵树的高度为(结果精确到0.1m,≈1.73)( )
A.3.5m B.3.6m C.4.3m D.5.1m
5.如图,在两建筑物之间有一旗杆,高15米,从A点经过旗杆顶点恰好看到矮建筑物的墙角C点,且俯角α为60°,又从A点测得D点的俯角β为30°,若旗杆底总G为BC的中点,则矮建筑物的高CD为【 】
A.20米 B.米 C.米 D.米
6.如图,小丽用一个两锐角分别为30°和60°的三角尺测量一棵树的高度,已知她与树之间的距离为9.0m,眼睛与地面的距离为1.6m,那么这棵树的高度大约是( )
A.5.2m B.6.8m C.9.4m D.17.2m
7.如图,若△ABC和△DEF的面积分别为S1,S2,则( )
A. B. C. D.
8.如图,Rt△ABC中,∠BAC=90°,AD⊥BC于D,设∠ABC=α,则下列结论错误的是( )
A.BC= B.CD=ADtanα C.BD=ABcosα D.AC=ADcosα
9.如图,△ABC的项点都在正方形网格的格点上,则cosC的值为( )
A. B. C. D.
10.如图:某飞机在空中A处探测到它的正下方地平面上目标C,此时飞机飞行高度AC=1200m,从飞机上看地平面指挥台B的俯角=,则飞机A与指挥台B的距离为( )
A.1200m B.1200m C.1200m D.2400m
二、填空题(每题3分,共24分)
11.如图,BC是一条河的直线河岸,点A是河岸BC对岸上的一点,AB⊥BC于B,站在河岸BC的C处测得∠BCA=50°,BC=10m,则桥长AB=____m(用计算器计算,结果精确到0.1米)
12.计算tan260°﹣2sin30°﹣cos45°的结果为_____.
13.如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC=BD=15cm,∠CBD=40°,则点B到CD的距离为_______cm(参考数据:sin20°≈0.342,cos20°≈0.940,sin40°≈0.643,cos40°≈0.766.计算结果精确到0.1cm,可用科学计算器).
14.若是二次函数,则m的值是__________.
15.在Rt△ABC中,∠C=90°,AB=2,BC=,则sin=_____.
16.如图,在直角△BAD中,延长斜边BD到点C,使DC=BD,连接AC,若tanB=,则tan∠CAD的值________.
17.如图,在四边形ABCD中,∠A=60°,∠B=∠D=90°,BC=6,CD=9,则AB=_______.
18.如图所示,运载火箭从地面L处垂直向上发射,当火箭到达A点时,从位于地面R处的雷达测得AR的距离是40km,仰角是30°,n秒后,火箭到达B点,此时仰角是45°,则火箭在这n秒中上升的高度是_____km.
三、解答题(共66分)
19.求值:
(1); 已知,求的值.
20.如图,一艘海轮位于灯塔P的北偏东方向,距离灯塔海里的处,它沿正南方向航行一段时间后,到达位于灯塔的南偏东方向上的处,这时,海轮所在的处距离灯塔有多远?
21.如图,某人为了测量小山顶上的塔ED的高,他在山下的点A处测得塔尖点D的仰角为45°,再沿AC方向前进60 m到达山脚点B,测得塔尖点D的仰角为60°,塔底点E的仰角为30°,求塔ED的高度.(结果保留根号)
22.如图,甲、乙两只捕捞船同时在上午从港出海捕鱼.甲船以的速度沿西偏北方向前进,乙船以的速度沿东北方向前进.甲船在航行到达处,此时甲船发现部分渔具丢在乙船上,于是甲船快速(匀速)沿北偏东的方向追赶,结果两船在处相遇.(其他因素不作考虑)
问乙船在什么时候被甲船追上;
求甲船追赶乙船的速度.
23.如图所示,某小组同学为了测量对面楼AB的高度,分工合作,有的组员测得两楼间距离为40米,有的组员在教室窗户处测得楼顶端A的仰角为30°,底端B的俯角为10°,请你根据以上数据,求出楼AB的高度.(精确到0.1米)(参考数据:sin10°≈0.17, cos10°≈0.98, tan10°≈0.18, ≈1.41, ≈1.73)
24.某市在地铁施工期间,交管部门在施工路段设立了矩形路况警示牌BCEF(如图所示),已知立杆AB的高度是3米,从侧面D点测到路况警示牌顶端C点和底端B点的仰角分别是60°和45°,求路况警示牌宽BC的值.
25.为维护南海主权,我海军舰艇加强对南海海域的巡航,年月日上午时,我海巡号舰艇在观察点处观测到其正东方向海里处有一灯塔,该舰艇沿南偏东的方向航行,时到达观察点,测得灯塔位于其北偏西方向,求该舰艇的巡航速度?(结果保留整数)
(参考数据:,)
26.某实践小组去公园测量人工湖AD的长度.小明进行如下测量:点D在点A的正北方向,点B在点A的北偏东50°方向,AB=40米.点E在点B的正北方向,点C在点B的北偏东30°方向,CE=30米.点C和点E都在点D的正东方向,求AD的长(结果精确到1米).(参考数据:≈1.732,sin50°≈0.766,cos50°≈0.643,tan50°≈1.192)