四川省雅安市2023届高三数学(理)上学期10月零诊试卷(Word版附解析)
展开
这是一份四川省雅安市2023届高三数学(理)上学期10月零诊试卷(Word版附解析),共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
雅安市高2020级零诊考试数学(理工类)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集,集合,.则( )A. B. C D. 2. 已知复数z满足,则( )A. B. C. D. 3. 某地区今年夏天迎来近50年来罕见的高温极端天气,当地气象部门统计了八月份每天的最高气温和最低气温,得到如下图表:某地区2022年8月份每天最高气温与最低气温根据图表判断,以下结论正确的是( )A. 8月每天最高气温的平均数低于35℃B. 8月每天最高气温的中位数高于40℃C. 8月前半月每天最高气温方差大于后半月最高气温的方差D. 8月每天最高气温的方差大于每天最低气温的方差4. 若,则( )A. B. C. D. 5. 函数在上的图象大致是( )A. B. C. D. 6. 执行如图所示的程序框图,输出S的值为( )A. 20 B. 40 C. 70 D. 1127. 中国古代数学名著《九章算术》中“均输”一章有如下问题:“今有竹九节,下三节容量四升,上四节容量三升.问中间二节欲均容各多少.”意思是“今有竹9节,下部分3节总容量4升,上部分4节总容量3升,且自下而上每节容积成等差数列,问中间二节容积各是多少?”按此规律,中间二节(自下而上第四节和第五节)容积之和为( )A. B. C. D. 8. 甲、乙、丙、丁4名志愿者参加新冠疫情防控志愿者活动,现有A,B,C三个小区可供选择,每个志愿者只能选其中一个小区去服务.则甲不在A小区、乙不在B小区服务的概率为( )A. B. C. D. 9. 如图,在等腰直角中,斜边,为线段BC上的动点,且,则的最小值为( )A. B. C. 4 D. 610. 已知下面给出的四个图都是各棱长均相等的直三棱柱,A为一个顶点,D,F,F分别是所在棱的中点.则满足直线的图形个数是( )A. 1 B. 2 C. 3 D. 411. 已知函数.给出以下几个结论:①若对任意,均有,则的最小值为2;②若对任意,均有,则的最小值为5;③若在区间上的极小值点有且仅有2个,则.其中,正确结论序号是( )A. ①② B. ①③ C. ②③ D. ①②③12. 设,,,则a,b,c的大小关系正确的是( )A. B. C. D. 二、填空题:本题共4小题,每小题5分,共20分.13. 在的展开式中,的系数为,则______.14. 给出两个条件:①,;②当时,(其中为的导函数).请写出同时满足以上两个条件的一个函数______.(写出一个满足条件的函数即可)15. 已知数列满足.若对任意,(且)恒成立,则m的取值范围为___________.16. 如图所示的三棱锥中,为等腰直角三角形,且,侧棱,,则经过该三棱锥四个顶点的球的表面积为______.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生依据要求作答.(一)必考题:共60分.17. 某地区对高一年级学生进行体质健康测试(简称体测),现随机抽取了900名学生的体测结果等级(“良好及以下”或“优秀”)进行分析.得到如下列联表: 良好及以下优秀合计男450200650女150100250合计600300900(1)计算并判断是否有99%的把握认为本次体测结果等级与性别有关系?(2)将频率视为概率,用样本估计总体.若从该地区高一所有学生中,采取随机抽样的方法每次抽取1名学生成绩进行具体指标分析,连续抽取3次,且各次抽取的结果相互独立,记被抽取到的3名学生的体测等级为“优秀”的人数为,求的分布列和数学期望.附表及公式:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828其中,.18. 记的内角A,B,C的对边分别为a,b,c,已知.(1)求角A的大小;(2)若点D在边BC上,,且,求面积的最大值.19. 如图①,为边长为6的等边三角形,E,F分别为AB,AC上靠近A的三等分点,现将沿EF折起,使点A翻折至点P的位置,且二面角的大小为120°(如图②).(1)在PC上是否存在点H,使得直线平面PBE?若存在,确定点H的位置;若不存在,说明理由.(2)求直线PC与平面PBE所成角的正弦值.20. 给出以下条件:①,,成等比数列;②,,成等比数列;③是与的等差中项.从中任选一个,补充在下面的横线上,再解答.已知单调递增的等差数列的前n项和为,且,______.(1)求的通项公式;(2)令是以2为首项,2为公比的等比数列,数列的前n项和为.若,,求实数的取值范围.注:如果选择多个条件分别解答,按第一个解答计分.21. 已知函数.(1)当时,函数有三个零点,求m取值范围;(2)若,求a的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程](10分)22. 数学中有许多美丽曲线,如在平面直角坐标系xOy中,曲线的形状如心形(如图),称这类曲线为心形曲线.以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.当时,(1)求E的极坐标方程;(2)已知P,Q为曲线E上异于O的两点,且,求的面积的最大值.[选修4-5:不等式选讲](10分)23. 已知,,且,证明:(1);(2).
相关试卷
这是一份2024届四川省雅安市天立高级中学高三上学期测课(零诊)数学(理)试题含解析,共15页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份四川省雅安市2023-2024学年高三数学(理)上学期零诊考试试卷(PDF版附答案),文件包含人教版九年级上册《数学》专辑参考答案pdf、人教版九年级上册《数学》第二十二章综合质量评测卷一pdf等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。
这是一份四川省雅安市2023-2024学年高三数学(文)上学期零诊考试试卷(PDF版附答案),文件包含人教版九年级上册《数学》专辑参考答案pdf、人教版九年级上册《数学》第二十二章综合质量评测卷一pdf等2份试卷配套教学资源,其中试卷共10页, 欢迎下载使用。