所属成套资源:2022年中考数学分类汇编
2022年中考数学分类汇编22讲专题07 平面直角坐标系与一次函数
展开这是一份2022年中考数学分类汇编22讲专题07 平面直角坐标系与一次函数,文件包含专题07平面直角坐标系与一次函数-老师版docx、专题07平面直角坐标系与一次函数-学生版docx等2份试卷配套教学资源,其中试卷共70页, 欢迎下载使用。
专题07 平面直角坐标系与一次函数
一.选择题
1.(2022·四川雅安)在平面直角坐标系中,点(a+2,2)关于原点的对称点为(4,﹣b),则ab的值为( )
A.﹣4 B.4 C.12 D.﹣12
2.(2022·广东)水中涟漪(圆形水波)不断扩大,记它的半径为r,则圆周长C与r的关系式为.下列判断正确的是( )
A.2是变量 B.是变量 C.r是变量 D.C是常量
3.(2022·山东威海)如图,在方格纸中,点P,Q,M的坐标分别记为(0,2),(3,0),(1,4).若MN∥PQ,则点N的坐标可能是( )
A.(2,3) B.(3,3) C.(4,2) D.(5,1)
4.(2022·黑龙江绥化)小王同学从家出发,步行到离家a米的公园晨练,4分钟后爸爸也从家出发沿着同一路线骑自行车到公园晨练,爸爸到达公园后立即以原速折返回到家中,两人离家的距离y(单位:米)与出发时间x(单位:分钟)的函数关系如图所示,则两人先后两次相遇的时间间隔为( )
A.2.7分钟 B.2.8分钟 C.3分钟 D.3.2分钟
5.(2022·黑龙江大庆)平面直角坐标系中,点M在y轴的非负半轴上运动,点N在x轴上运动,满足.点Q为线段的中点,则点Q运动路径的长为( )
A. B. C. D.
6.(2022·湖南长沙)在平面直角坐标系中,点关于原点对称的点的坐标是( )
A. B. C. D.
7.(2022·黑龙江齐齐哈尔)如图①所示(图中各角均为直角),动点Р从点A出发,以每秒1个单位长度的速度沿A→B→C→D→E路线匀速运动,△AFP的面积y随点Р运动的时间x(秒)之间的函数关系图象如图②所示,下列说法正确的是( )
A.AF=5 B.AB=4 C.DE=3 D.EF=8
8.(2022·广西梧州)如图,在平面直角坐标系中,直线与直线相交于点A,则关于x,y的二元一次方程组的解是( )
A. B. C. D.
9.(2022·贵州毕节)现代物流的高速发展,为乡村振兴提供了良好条件,某物流公司的汽车行驶后进入高速路,在高速路上匀速行驶一段时间后,再在乡村道路上行驶到达目的地.汽车行驶的时间x(单位:h)与行驶的路程y(单位:)之间的关系如图所示,请结合图象,判断以下说法正确的是( )
A.汽车在高速路上行驶了 B.汽车在高速路上行驶的路程是
C.汽车在高速路上行驶的平均速度是 D.汽车在乡村道路上行驶的平均速度是
10.(2022·湖北武汉)如图,边长分别为1和2的两个正方形,其中有一条边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形的面积为,小正方形与大正方形重叠部分的面积为,若,则S随t变化的函数图象大致为( )
A.B.C. D.
11.(2022·内蒙古包头)在一次函数中,y的值随x值的增大而增大,且,则点在( )
A.第四象限 B.第三象限 C.第二象限 D.第一象限
12.(2022·湖北宜昌)如图是小强散步过程中所走的路程(单位:)与步行时间(单位:)的函数图象.其中有一时间段小强是匀速步行的.则这一时间段小强的步行速度为( )
A. B. C. D.
13.(2022·广东)在平面直角坐标系中,将点向右平移2个单位后,得到的点的坐标是( )
A. B. C. D.
14.(2022·湖南永州)学校组织部分师生去烈士陵园参加“不忘初心,牢记使命”主题教育活动、师生队伍从学校出发,匀速行走30分钟到达烈士陵园,用1小时在烈主陵园进行了祭扫和参观学习等活动,之后队伍按原路匀速步行45分钟返校、设师生队伍离学校的距离为米,离校的时间为分钟,则下列图象能大致反映与关系的是( )
A. B.
C. D.
15.(2022·广西玉林)龟兔赛跑之后,输了比赛的兔子决定和乌龟再赛一场.图中的函数图象表示了龟兔再次赛跑的过程(x表示兔子和乌龟从起点出发所走的时间,分别表示兔子与乌龟所走的路程).下列说法错误的是( )
A.兔子和乌龟比赛路程是500米 B.中途,兔子比乌龟多休息了35分钟
C.兔子比乌龟多走了50米 D.比赛结果,兔子比乌龟早5分钟到达终点
16.(2022·山东烟台)周末,父子二人在一段笔直的跑道上练习竞走,两人分别从跑道两端开始往返练习.在同一直角坐标系中,父子二人离同一端的距离s(米)与时间t(秒)的关系图像如图所示.若不计转向时间,按照这一速度练习20分钟,迎面相遇的次数为( )
A.12 B.16 C.20 D.24
17.(2022·山东聊城)如图,一次函数的图象与x轴,y轴分别交于点A,B,点是x轴上一点,点E,F分别为直线和y轴上的两个动点,当周长最小时,点E,F的坐标分别为( )
A., B.,
C., D.,
18.(2022·湖北随州)已知张强家、体育场、文具店在同一直线上.下面的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x表示时间,y表示张强离家的距离.则下列结论不正确的是( )
A.张强从家到体育场用了15min B.体育场离文具店1.5km
C.张强在文具店停留了20min D.张强从文具店回家用了35min
19.(2022·贵州铜仁)如图,在矩形中,,则D的坐标为( )
A. B. C. D.
20.(2022·北京)下面的三个问题中都有两个变量:
①汽车从A地匀速行驶到B地,汽车的剩余路程y与行驶时间x;
②将水箱中的水匀速放出,直至放完,水箱中的剩余水量y与放水时间x;
③用长度一定的绳子围成一个矩形,矩形的面积y与一边长x,其中,变量y与变量x之间的函数关系可以利用如图所示的图象表示的是( )
A.①② B.①③ C.②③ D.①②③
21.(2022·贵州遵义)遵义市某天的气温(单位:℃)随时间(单位:)的变化如图所示,设表示0时到时气温的值的极差(即0时到时范围气温的最大值与最小值的差),则与的函数图象大致是( )
A. B.
C. D.
22.(2022·四川雅安)一辆公共汽车从车站开出,加速行驶一段时间后开始匀速行驶.过了一段时间,汽车到达下一车站.乘客上、下车后汽车开始加速,一段时间后又开始匀速行驶.下图中近似地刻画出汽车在这段时间内的速度变化情况的是( )
A. B. C. D.
23.(2022·湖北鄂州)数形结合是解决数学问题常用的思想方法.如图,一次函数y=kx+b(k、b为常数,且k<0)的图象与直线y=x都经过点A(3,1),当kx+b<x时,x的取值范围是( )
A.x>3 B.x<3 C.x<1 D.x>1
24.(2022·四川广安)在平面直角坐标系中,将函数y=3x +2的图象向下平移3个单位长度,所得的函数的解析式是( )
A.y=3x+5 B.y=3x﹣5 C.y=3x+1 D.y=3x﹣1
25.(2022·湖北恩施)图1是我国青海湖最深处的某一截面图,青海湖水面下任意一点A的压强P(单位:cmHg)与其离水面的深度h(单位:m)的函数解析式为,其图象如图2所示,其中为青海湖水面大气压强,k为常数且.根据图中信息分析(结果保留一位小数),下列结论正确的是( )
A.青海湖水深16.4m处的压强为188.6cmHg
B.青海湖水面大气压强为76.0cmHg
C.函数解析式中自变量h的取值范围是
D.P与h的函数解析式为
26.(2022·贵州遵义)若一次函数的函数值随的增大而减小,则值可能是( )
A.2 B. C. D.
27.(2022·黑龙江哈尔滨)一辆汽车油箱中剩余的油量与已行驶的路程的对应关系如图所示,如果这辆汽车每千米的耗油量相同,当油箱中剩余的油量为时,那么该汽车已行驶的路程为( )
A. B. C. D.
28.(2022·重庆)如图是小颖0到12时的心跳速度变化图,在这一时段内心跳速度最快的时刻约为( )
A.3时 B.6时 C.9时 D.12时
29.(2022·湖北武汉)匀速地向一个容器内注水,最后把容器注满.在注水过程中,水面高度随时间的变化规律如图所示(图中为一折线).这个容器的形状可能是( )
A. B. C. D.
30.(2022·四川乐山)点所在象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
31.(2022·浙江温州)小聪某次从家出发去公园游玩的行程如图所示,他离家的路程为s米,所经过的时间为t分钟,下列选项中的图像,能近似刻画s与t之间关系的是( )
A. B.
C. D.
32.(2022·四川泸州)如图,在平面直角坐标系xOy中,矩形OABC的顶点B的坐标为(10,4),四边形ABEF是菱形,且tan∠ABE=.若直线l把矩形OABC和菱形ABEF组成的图形的面积分成相等的两部分,则直线l的解析式为( )
A. B. C. D.
二.填空题
33.(2022·黑龙江大庆)在函数中,自变量的取值范围是_________.
34.(2022·广西梧州)在平面直角坐标系中,请写出直线上的一个点的坐标________.
35.(2022·贵州毕节)如图,在平面直角坐标系中,把一个点从原点开始向上平移1个单位,再向右平移1个单位,得到点;把点向上平移2个单位,再向左平移2个单位,得到点;把点向下平移3个单位,再向左平移3个单位,得到点;把点向下平移4个单位,再向右平移4个单位,得到点;…;按此做法进行下去,则点的坐标为_________.
36.(2022·江苏泰州)如图所示的象棋盘中,各个小正方形的边长均为1.“马”从图中的位置出发,不走重复路线,按照“马走日”的规则,走两步后的落点与出发点间的最短距离为__________.
37.(2022·江苏泰州)一次函数的图像经过点(1,0).当y>0时,x的取值范围是__________.
38.(2022·内蒙古赤峰)已知王强家、体育场、学校在同一直线上,下面的图像反映的过程是:某天早晨,王强从家跑步去体育场锻炼,锻炼结束后,步行回家吃早餐,饭后骑自行车到学校.图中表示时间,表示王强离家的距离.则下列结论正确的是_________.(填写所有正确结论的序号)
①体育场离王强家 ②王强在体育场锻炼了
③王强吃早餐用了 ④王强骑自行车的平均速度是
39.(2022·上海)已知f(x)=3x,则f(1)=_____.
40.(2022·湖北鄂州)中国象棋文化历史久远.某校开展了以“纵横之间有智意 攻防转换有乐趣”为主题的中国象棋文化节,如图所示是某次对弈的残局图,如果建立平面直角坐标系,使“帥”位于点(﹣1,﹣2),“馬”位于点(2,﹣2),那么“兵”在同一坐标系下的坐标是_____.
41.(2022·黑龙江大庆)写出一个过点且y随x增大而减小的一次函数关系式_______.
42.(2022·江苏无锡)请写出一个函数的表达式,使其图像分别与x轴的负半轴、y轴的正半轴相交:________.
43.(2022·湖南永州)已知一次函数的图象经过点,则______.
44.(2022·山东烟台)观察如图所示的象棋棋盘,若“兵”所在的位置用(1,3)表示,“炮”所在的位置用(6,4)表示,那么“帅”所在的位置可表示为 _____.
45.(2022·江苏苏州)一个装有进水管和出水管的容器,开始时,先打开进水管注水,3分钟时,再打开出水管排水,8分钟时,关闭进水管,直至容器中的水全部排完.在整个过程中,容器中的水量y(升)与时间x(分钟)之间的函数关系如图所示,则图中a的值为______.
46.(2022·黑龙江齐齐哈尔)如图,直线与轴相交于点,与轴相交于点,过点作交轴于点,过点作轴交于点,过点作交轴于点,过点作轴交于点…,按照如此规律操作下去,则点的纵坐标是______.
47.(2022·四川广安)若点P(m+1,m)在第四象限,则点Q(﹣3,m+2)在第________象限.
48.(2022·吉林)如图,在平面直角坐标系中,点的坐标为,点在轴正半轴上,以点为圆心,长为半径作弧,交轴正半轴于点,则点的坐标为__________.
49.(2022·辽宁锦州)点在一次函数的图像上,当时,,则a的取值范围是____________.
50.(2022·湖南郴州)科技小组为了验证某电路的电压U(V)、电流I(A)、电阻三者之间的关系:,测得数据如下:
100 | 200 | 220 | 400 | |
2.2 | 1.1 | 1 | 0.55 |
那么,当电阻时,电流________A.
三.解答题
51.(2022·湖北鄂州)在“看图说故事”话动中,某学习小组设计了一个问题情境:小明从家跑步去体育场,在那里锻炼了一阵后又走到文具店买圆规,然后散步走回家.小明离家的距离y(km)与他所用的时间x(min)的关系如图所示:(1)小明家离体育场的距离为 km,小明跑步的平均速度为 km/min;
(2)当15≤x≤45时,请直接写出y关于x的函数表达式;(3)当小明离家2km时,求他离开家所用的时间.
52.(2022·黑龙江齐齐哈尔)在一条笔直的公路上有A、B两地,甲、乙二人同时出发,甲从A地步行匀速前往B地,到达B地后,立刻以原速度沿原路返回A地.乙从B地步行匀速前往A地(甲、乙二人到达A地后均停止运动),甲、乙二人之间的距离y (米)与出发时间x (分钟)之间的函数关系如图所示,请结合图像解答下列问题:(1)A、B两地之间的距离是 米,乙的步行速度是 米/分;
(2)图中a= ,b= ,c= ;(3)求线段MN的函数解析式;
(4)在乙运动的过程中,何时两人相距80米?(直接写出答案即可)
53.(2022·黑龙江)为抗击疫情,支援B市,A市某蔬菜公司紧急调运两车蔬菜运往B市.甲、乙两辆货车从A市出发前往B市,乙车行驶途中发生故障原地维修,此时甲车刚好到达B市.甲车卸载蔬菜后立即原路原速返回接应乙车,把乙车的蔬菜装上甲车后立即原路原速又运往B市.乙车维修完毕后立即返回A市.两车离A市的距离y(km)与乙车所用时间x(h)之间的函数图象如图所示.(1)甲车速度是_______km/h,乙车出发时速度是_______km/h;(2)求乙车返回过程中,乙车离A市的距离y(km)与乙车所用时间x(h)的函数解析式(不要求写出自变量的取值范围);(3)乙车出发多少小时,两车之间的距离是120km?请直接写出答案.
54.(2022·内蒙古包头)由于精准扶贫的措施科学得当,贫困户小颖家今年种植的草莓喜获丰收,采摘上市16天全部销售完.小颖对销售情况进行统计后发现,在该草莓上市第x天(x取整数)时,日销售量y(单位:千克)与x之间的函数关系式为草莓价格m(单位:元/千克)与x之间的函数关系如图所示.(1)求第14天小颖家草莓的日销售量;(2)求当时,草莓价格m与x之间的函数关系式;(3)试比较第8天与第10天的销售金额哪天多?
56.(2022·广东)物理实验证实:在弹性限度内,某弹簧长度y()与所挂物体质量x()满足函数关系.下表是测量物体质量时,该弹簧长度与所挂物体质量的数量关系.
x | 0 | 2 | 5 |
y | 15 | 19 | 25 |
(1)求y与x的函数关系式;(2)当弹簧长度为20时,求所挂物体的质量.
57.(2022·河北)如图,平面直角坐标系中,线段AB的端点为,.(1)求AB所在直线的解析式;(2)某同学设计了一个动画:在函数中,分别输入m和n的值,使得到射线CD,其中.当c=2时,会从C处弹出一个光点P,并沿CD飞行;当时,只发出射线而无光点弹出.①若有光点P弹出,试推算m,n应满足的数量关系;②当有光点P弹出,并击中线段AB上的整点(横、纵坐标都是整数)时,线段AB就会发光,求此时整数m的个数.
58.(2022·吉林)李强用甲、乙两种具有恒温功能的热水壶同时加热相同质量的水,甲壶比乙壶加热速度快.在一段时间内,水温(℃)与加热时间之间近似满足一次函数关系,根据记录的数据,画函数图象如下:
(1)加热前水温是 ℃;(2)求乙壶中水温关于加热时间的函数解析式;(3)当甲壶中水温刚达到80℃时,乙壶中水温是 ℃.
59.(2022·黑龙江牡丹江)2008年5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组的所走路程y甲(千米)、y乙(千米)与时间x(小时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题:(1)由于汽车发生故障,甲组在途中停留了___小时;(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图象所表示的走法是否符合约定?
60.(2022·贵州铜仁)在平面直角坐标系内有三点A(−1,4)、B(−3,2)、C(0,6).(1)求过其中两点的直线的函数表达式(选一种情形作答);(2)判断A、B、C三点是否在同一直线上,并说明理由.
61.(2022·黑龙江牡丹江)如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.
62.(2022·上海)一个一次函数的截距为1,且经过点A(2,3).
(1)求这个一次函数的解析式;(2)点A,B在某个反比例函数上,点B横坐标为6,将点B向上平移2个单位得到点C,求cos∠ABC的值.
相关试卷
这是一份2022年中考数学分类汇编22讲专题02 整式与因式分解,文件包含专题02整式与因式分解-老师版docx、专题02整式与因式分解-学生版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。
这是一份2022年中考数学分类汇编22讲专题22 与二次函数相关的压轴题,文件包含专题22与二次函数相关的压轴题-老师版docx、专题22与二次函数相关的压轴题-学生版docx等2份试卷配套教学资源,其中试卷共132页, 欢迎下载使用。
这是一份2022年中考数学分类汇编22讲专题20 与圆相关的压轴题,文件包含专题20与圆相关的压轴题-老师版docx、专题20与圆相关的压轴题-学生版docx等2份试卷配套教学资源,其中试卷共78页, 欢迎下载使用。