终身会员
搜索
    上传资料 赚现金

    2023年中考集训20讲专题18:将军饮马型最值问题

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      专题18:将军饮马型最值问题-(老师版).docx
    • 练习
      专题18:将军饮马型最值问题-(学生版).docx
    专题18:将军饮马型最值问题-(老师版)第1页
    专题18:将军饮马型最值问题-(老师版)第2页
    专题18:将军饮马型最值问题-(老师版)第3页
    专题18:将军饮马型最值问题-(学生版)第1页
    专题18:将军饮马型最值问题-(学生版)第2页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023年中考集训20讲专题18:将军饮马型最值问题

    展开

    这是一份2023年中考集训20讲专题18:将军饮马型最值问题,文件包含专题18将军饮马型最值问题-老师版docx、专题18将军饮马型最值问题-学生版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。


    专题18:将军饮马型最值问题-2022年中考数学解题方法终极训练

    一、单选题

    1.已知线段AB及直线l,在直线上确定一点,使最小,则下图中哪一种作图方法满足条件(       ).

    A B

    C D

    【答案】C

    【解析】根据对称的性质以及两点之间线段最短即可解决问题.

    【详解】解:AB在直线l的同侧,

    B点关于l的对称点B',连接AB'l的交点为P,由对称性可知BP=B'P

    PA+PB=PB′+PA=AB为最小

    故选:C

    【点评】本题考查轴对称求最短距离,掌握两点在直线同侧时,在直线上找一点到两点距离最短的方法是解题的关键.

    2.如图,等边ABC的边长为6ADBC边上的中线,MAD上的动点,E是边AC上一点,若AE2,则EMCM的最小值为(       

     

    A B3 C2 D4

    【答案】C

    【解析】连接BE,交AD于点M,过点EEFBC交于点F,此时EMCM的值最小,求出BE即可.

    【详解】解:连接BE,交AD于点M,过点EEFBC交于点F

    ∵△ABC是等边三角形,ADBC边上的中线,

    B点与C点关于AD对称,

    BMCM

    EMCMEMBMBE,此时EMCM的值最小,

    AC6AE2

    EC4

    RtEFC中,ECF60°

    FC2EF2

    RtBEF中,BF4

    BE2

    故选:C

    【点评】本题考查轴对称求最短距离,熟练掌握轴对称求最短距离的方法,灵活运用勾股定理是解题的关键.

    3.如图,在RtABC中,C90°AC6BC8,点F在边AC上,并且CF2,点E为边BC上的动点,将CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是(       

    A1.5 B1.2 C2.4 D.以上都不对

    【答案】B

    【解析】【详解】思路引领:先依据勾股定理求得AB的长,然后依据翻折的性质可知PFFC,故此点P在以F为圆心,以2为半径的圆上,依据垂线段最短可知当FPAB时,点PAB的距离最短,然后依据题意画出图形,最后,利用相似三角形的性质求解即可.

    答案详解:如图所示:当PEAB

    Rt△ABC中,∵∠C90°AC6BC8

    AB10

    由翻折的性质可知:PFFC2FPEC90°

    PEAB

    ∴∠PDB90°

    由垂线段最短可知此时FD有最小值.

    FP为定值,

    PD有最小值.

    ∵∠AAACBADF

    ∴△AFD∽△ABC

    ,即,解得:DF3.2

    PDDFFP3.221.2

    故选:B

    4.如图所示,已知A1y1),B2y2)为反比例函数y图象上的两点,动点Px0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大值时,点P的坐标是(       

    A.(30 B.(0 C.(0 D.(0

    【答案】A

    【解析】【详解】思路引领:求出AB的坐标,设直线AB的解析式是ykx+b,把AB的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在ABP中,|APBP|AB,延长ABx轴于P,当PP点时,PAPBAB,此时线段AP与线段BP之差达到最大,求出直线ABx轴的交点坐标即可.

    答案详解:A1y1),B2y2)代入反比例函数y得:y12y21

    A12),B21),

    ABP中,由三角形的三边关系定理得:|APBP|AB

    延长ABx轴于P,当PP点时,PAPBAB

    即此时线段AP与线段BP之差达到最大,

    设直线AB的解析式是ykx+b

    AB的坐标代入得:

    解得:k1b3

    直线AB的解析式是yx+3

    y0时,x3

    P30).

    故选:A

    5.如图,M的半径为2,圆心M的坐标为(34),点PM上的任意一点,PAPB,且PAPBx轴分别交于AB两点,若点A、点B关于原点O对称,则AB的最小值为(       

    A3 B4 C5 D6

    【答案】D

    【解析】【详解】思路引领:Rt△APBAB2OP知要使AB取得最小值,则PO需取得最小值,连接OM,交M于点P,当点P位于P位置时,OP取得最小值,据此求解可得.

    答案详解:连接OP

    PAPB

    ∴∠APB90°

    AOBO

    AB2PO

    若要使AB取得最小值,则PO需取得最小值,

    连接OM,交M于点P,当点P位于P位置时,OP取得最小值,

    过点MMQx轴于点Q

    OQ3MQ4

    OM5

    MP2

    OP3

    AB2OP6

    故选:D

    6.如图,点都在双曲线上,点CD分别是x轴、y轴上的动点(CD不同时与原点重合),则四边形ABCD的周长的最小值为(       

    A B C D

    【答案】B

    【解析】先把A点和B点的坐标代入反比例函数解析式中,求出ab的值,确定出AB坐标,再作A点关于y轴的对称点PB点关于x轴的对称点Q,根据对称的性质得到P点坐标为(-13),Q点坐标为(3-1),PQ分别交x轴、y轴于C点、D点,根据两点之间线段最短得此时四边形PABQ的周长最小,然后利用两点间的距离公式求解可得.

    【详解】分别把点代入,得

    ,则点A的坐标为,点B的坐标为.

    如图,分别作点A关于y轴的对称点P,点B关于x轴的对称点Q,则点P的坐标为,点Q的坐标为;连接PQ分别交x轴、y轴于点C、点D,此时四边形ABCD的周长最小,

    四边形ABCD周长为:

    .

    故选B.

    【点评】考查了反比例函数的综合题:掌握反比例函数图象上点的坐标特征、熟练运用两点之间线段最短解决有关几何图形周长最短的问题是解题的关键.

    7.如图1,在菱形ABCD中,AB6BAD120°,点EBC边上的一动点,点P是对角线BD上一动点,设PD的长度为xPEPC的长度和为y,图2y关于x的函数图象,其中Hab)是图象上的最低点,则a+b的值为(  )

    A B C D36

    【答案】A

    【解析】从图2知,的最小值,从图1作辅助线知;接下来求出,设交于点,则求出,最后得,所以,选

    【详解】解:如下图,在边上取点,使得关于对称,

    连接,得

    连接,作,垂足为

    由三角形三边关系和垂线段最短知,

    有最小值

    菱形中,

    中,

    解得

    是图象上的最低点

    此时令交于点

    由于,在中,

    ,又

    的长度为,图2是图象上的最低点,

    故选:A

    【点评】本题考查动点及最小值问题,解题的关键是在于通过翻折点轴对称),然后利用三角形三边关系及垂线段最短原理,判断出最小值为

    8.如图,凸四边形中,,若点MN分别为边上的动点,则的周长最小值为(       

    A B C6 D3

    【答案】C

    【解析】由轴对称知识作出对称点,连接两对称点,由两点之间线段最短证明最短,多次用勾股定理求出相关线段的长度,平角的定义及角的和差求出角度的大小,最后计算出的周长最小值为6

    【详解】解:作点关于的对称点分别为点和点

    连接于点和点,连接

    上分别取一动点(不同于点

    连接,如图1所示:

    时周长最小;

    连接,过点的延长线于点

    如图示2所示:

    中,

    中,由勾股定理得:

    故选:C

    【点评】本题综合考查了轴对称最短路线问题,勾股定理,平角的定义和两点之间线段最短等相关知识点,解题的关键是掌握轴对称最短路线问题,难点是构建直角三角形求两点之间的长度.

    9.如图,在ABC中,AB2ABC60°ACB45°DBC的中点,直线l经过点DAElBFl,垂足分别为EF,则AE+BF的最大值为(  )

    A B2 C2 D3

    【答案】A

    【解析】把要求的最大值的两条线段经过平移后形成一条线段,然后再根据垂线段最短来进行计算即可.

    【详解】解:如图,过点CCK⊥l于点K,过点AAH⊥BC于点H

    Rt△AHB中,

    ∵∠ABC60°AB2

    ∴BH1AH

    Rt△AHC中,∠ACB45°

    ∴AC

    DBC中点,

    ∴BDCD

    △BFD△CKD中,

    ∴△BFD≌△CKDAAS),

    ∴BFCK

    延长AE,过点CCN⊥AE于点N

    可得AE+BFAE+CKAE+ENAN

    Rt△ACN中,ANAC

    当直线l⊥AC时,最大值为

    综上所述,AE+BF的最大值为

    故选:A

    【点评】本题主要考查了全等三角形的判定定理和性质定理及平移的性质,构建全等三角形是解答此题的关键.

    10.如图,点AB的坐标分别为,点C为坐标平面内一点,,点M为线段的中点,连接,则的最大值为(

    A B C D

    【答案】B

    【解析】如图所示,取AB的中点N,连接ONMN,根据三角形的三边关系可知OMON+MN,则当ONMN共线时,OM= ON+MN最大,再根据等腰直角三角形的性质以及三角形的中位线即可解答.

    【详解】解:如图所示,取AB的中点N,连接ONMN,三角形的三边关系可知OMON+MN,则当ONMN共线时,OM= ON+MN最大,

    △ABO为等腰直角三角形,

    ∴AB=NAB的中点,

    ∴ON=

    ∵MAC的中点,

    ∴MN△ABC的中位线,BC=1

    MN=

    ∴OM=ON+MN=

    ∴OM的最大值为

    故答案选:B

    【点评】本题考查了等腰直角三角形的性质以及三角形中位线的性质,解题的关键是确定当ONMN共线时,OM= ON+MN最大.

    二、填空题

    11.如图,正ABC的边长为2,过点B的直线lAB,且ABCABC关于直线l对称,D为线段BC上一动点,则AD+CD的最小值是_____

    【答案】4

    【解析】根据等边三角形的性质及轴对称的性质得到ABC=∠B=60°B=AB=BC=2,证明CBD≌△BD,得到CD=D,推出当AD三点共线时,AD+CD最小,此时AD+CD=B+AB=4

    【详解】解:如图,连接D

    ABC的边长为2ABCABC关于直线l对称,

    ∴∠ABC=∠B=60°B=AB=BC=2

    ∴∠CB=60°

    ∴∠CB=∠B

    BD=BD

    ∴△CBD≌△BD

    CD=D

    AD+CD=D+CD

    AD三点共线时,AD+CD最小,此时AD+CD=B+AB=4

    故答案为:4

    【点评】此题考查了等边三角形的性质,轴对称的性质,全等三角形的判定及性质,最短路径问题,正确掌握全等三角形的判定是解题的关键.

    12.如图,在等边ABC中,EAC边的中点,AD垂直平分BCPAD上的动点.若AD=6,则EP+CP的最小值为_______________

    【答案】6

    【解析】要求EP+CP的最小值,需考虑通过作辅助线转化EPCP的值,从而找出其最小值求解.

    【详解】解:作点E关于AD的对称点F,连接CF

    ∵△ABC是等边三角形,ADBC边上的中垂线,

    E关于AD的对应点为点F

    CF就是EP+CP的最小值.

    ∵△ABC是等边三角形,EAC边的中点,

    FAB的中点,

    CF=AD=6

    EP+CP的最小值为6

    故答案为6

    【点评】本题考查了等边三角形的性质和轴对称等知识,熟练掌握等边三角形和轴对称的性质是本题的关键.

    13.如图所示,在中,,直线EFAB的垂直平分线,DBC的中点,MEF上一个动点,的面积为12,则周长的最小值是_______________

    【答案】8

    【解析】连接ADAM,由EF是线段AB的垂直平分线,得到AM=BM,则BDM的周长=BD+BM+DM=AM+DM+BD,要想BDM的周长最小,即要使AM+DM的值最小,故当AMD三点共线时,AM+DM最小,即为AD,由此再根据三线合一定理求解即可.

    【详解】解:如图所示,连接ADAM

    EF是线段AB的垂直平分线,

    AM=BM

    ∴△BDM的周长=BD+BM+DM=AM+DM+BD

    要想BDM的周长最小,即要使AM+DM的值最小,

    AMD三点共线时,AM+DM最小,即为AD

    AB=ACDBC的中点,

    ADBC

    AD=6

    ∴△BDM的周长最小值=AD+BD=8

    故答案为:8

    【点评】本题主要考查了线段垂直平分线的性质,三线合一定理,解题的关键在于能够根据题意得到当AMD三点共线时,AM+DM最小,即为AD

    14.如图,将ABC沿AD折叠使得顶点C恰好落在AB边上的点M处,DBC上,点P在线段AD上移动,若AC6CD3BD7,则PMB周长的最小值为 ___

    【答案】18

    【解析】首先明确要使得PMB周长最小,即使得PM+PB最小,再根据翻折的性质可知PM=PC,从而可得满足PC+PB最小即可,根据两点之间线段最短确定BC即为最小值,从而求解即可.

    【详解】解:由翻折的性质可知,AM=ACPM=PC

    M点为AB上一个固定点,则BM长度固定,

    ∵△PMB周长=PM+PB+BM

    要使得PMB周长最小,即使得PM+PB最小,

    PM=PC

    满足PC+PB最小即可,

    显然,当PBC三点共线时,满足PC+PB最小,如图所示,

    此时,P点与D点重合,PC+PB=BC

    ∴△PMB周长最小值即为BC+BM

    此时,作DSABS点,DTAC延长线于T点,AQBC延长线于Q点,

    由题意,ADBAC的角平分线,

    DS=DT

    即:

    解得:AB=14

    AM=AC=6

    BM=14-6=8

    ∴△PMB周长最小值为BC+BM=3+7+8=18

    故答案为:18

    【点评】本题考查翻折的性质,以及最短路径问题等,掌握翻折的基本性质,利用角平分线的性质进行推理求解,理解并熟练运用两点之间线段最短是解题关键.

    15.在边长为2的菱形ABCD中,A60°MAD边的中点,若线段MA绕点M旋转得线段MA

    1)如图,线段MA'的长=___

    2)如图,连接A'C,则A'C长度的最小值是___

    【答案】     1    

    【解析】【详解】思路引领:)由中点的定义和旋转的性质可求解;

    )当A'MC上时,线段A'C长度最小,作MECD于点E,首先在直角DME中利用三角函数求得EDEM的长,然后在直角MEC中利用勾股定理求得MC的长,然后减去MA的长即可求解.

    答案详解:MAD边的中点,

    MA1

    线段MA绕点M旋转得线段MA'

    MA'1

    故答案为:1

    )如图,作MECD于点E

    菱形ABCD中,A60°

    ∴∠EDM60°

    在直角MDE中,DEMD•cos∠EDM1MEMD•sin∠EDM

    ECCD+ED2

    在直角CEM中,MC

    A'MC上时A'C最小,则AC长度的最小值是:1

    故答案为1

    16.如图所示,已知Ay1),B2y2)为反比例函数y图象上的两点,动点Px0)在x正半轴上运动,当线段AP与线段BP之和达到最小时,点P的坐标是___;当线段AP与线段BP之差达到最大时,点P的坐标是___

    【答案】         

    【解析】【详解】思路引领:1)如图1,过x轴作点B的对称点B,连接ABx轴的交点即为所求的点P.根据点AB的坐标可以求得直线AB 解析式,根据该解析式可以求得点P的坐标;

    2)如图2,求出AB的坐标,设直线AB的解析式是ykx+b,把AB的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在ABP中,|APBP|AB,延长ABx轴于P,当PP点时,PAPBAB,此时线段AP与线段BP之差达到最大,求出直线ABx轴的交点坐标即可.

    答案详解:Ay1),B2y2)代入反比例函数y得:y12y2

    A2),B2).

    1)如图1,过x轴作点B的对称点B,连接ABx轴的交点即为所求的点P,则B2).

    设直线ABykx+bk≠0),则

    解得

    故直线AB的解析式为:yx

    y0

    解得,x1.7

    P1.70);

    2ABP中,由三角形的三边关系定理得:|APBP|AB

    延长ABx轴于P,当PP点时,PAPBAB

    即此时线段AP与线段BP之差达到最大,

    设直线AB的解析式是yax+ca≠0

    AB的坐标代入得:

    解得:

    直线AB的解析式是yx

    y0时,x

    P0);

    故答案是:(1.70);(0).

    17.如图,矩形ABCD中,AB2BC3,点EF分别在边AB,边BC上运动,点G在矩形内,且DGCGEFFGFGEF12,则线段GF的最小值为_______

    【答案】

    【解析】取CD的中点M,取EF的中点N,连接GMGNNBBM,根据矩形的性质和题中所给的条件得GM=DM=CM=1,设FG=a,则EF=2a,因为NEF的中点,所以FN=EN=a,根据和勾股定理得,因为,所以当且仅当BNGM四点共线时,值最小,解得,即可得线段GF的最小值为:

    【详解】解:如图所示,取CD的中点M,取EF的中点N,连接GMGNNBBM

    ,

    四边形ABCD是矩形,

    CD=AB=2AD=BC=3,

    GM=DM=CM=1

    FG=a,则EF=2a

    NEF的中点,

    FN=EN=a

    BN=EN=FN=a

    FG=FN=a

    中,根据勾股定理

    中,BC=3CM=1,根据勾股定理,

    当且仅当BNGM四点共线时,值最小,

    则线段GF的最小值为:

    故答案为:

    【点评】本题考查了矩形的性质,勾股定理和直角三角形的性质解题的关键是构造辅助线,当BNGM四点共线时,值最小,则线段GF有最小值.

    18.如图,正方形ABCD的边长为4EBC上一点,且BE1FAB边上的一个动点,连接EF,以EF为边向右侧作等边EFG,连接CG,则CG的最小值为______

    【答案】

    【解析】【详解】解:由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动

    EFB绕点E旋转60°,使EFEG重合,得到EFB≌△EHG

    从而可知EBH为等边三角形,点G在垂直于HE的直线HN

    CMHN,则CM即为CG的最小值

    EPCM,可知四边形HEPM为矩形,

    CMMP+CPHEEC1

    故答案为

    19.在综合实践课上,小明把边长为2cm的正方形纸片沿着对角线AC剪开,如图l所示.然后固定纸片ABC,把纸片ADC沿AC的方向平移得到ADC,连ABDBDC,在平移过程中:(1)四边形ABCD的形状始终是 __;(2AB+DB的最小值为 __

    【答案】     平行四边形     2

    【解析】(1)利用平移的性质证明即可.

    2)如图2中,作直线DD,作点C关于直线DD的对称点C,连接DCBC,过点BBHCCH.求出BC,证明AB+BD′=BD′+CD′=BD′+DC″≥BC,可得结论.

    【详解】解:(1)如图2中,AD′=BCAD′∥BC

    四边形ABCD是平行四边形,

    故答案为:平行四边形.

    2)如图2中,作直线DD,作点C关于直线DD的对称点C,连接DCBC,过点BBHCCH

     

    四边形ABCD是正方形,

    AB=BC=2ABC=90°

    AC=AB=2

    BJAC

    AJ=JC

    BJ=AC=

    ∵∠BJC=∠JCH=∠H=90°

    四边形BHCJ是矩形,

    BJ=CJ

    四边形BHCJ是正方形,

    BH=CH=

    RtBHC中,BH=HC″=3

    四边形ABCD是平行四边形,

    AB=CD

    AB+BD′=BD′+CD′=BD′+DC″≥BC

    AB+BD′≥2

    AB+DB的最小值为2

    故答案为:2

    【点评】本题考查作图-平移变换,轴对称最短问题,勾股定理等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.

    20.如图,四边形ABCD为矩形,ABAD,点P为边AB上一点.以DP为折痕将DAP翻折,点A的对应点为点A'.连结AA'AA' PD于点M,点Q为线BC上一点,连结AQMQ,则AQMQ的最小值是________

    【答案】

    【解析】如图,作点A关于BC的对称点T,取AD的中点R,连接BTQTRTRM.想办法求出RMRT,求出MT的最小值,再根据QAQMQMQTMT,可得结论.

    【详解】解:如图,作点A关于BC的对称点T

    AD的中点R,连接BTQTRTRM

    四边形ABCD是矩形,

    ∴∠RAT90°

    ARDRAT2AB4

    RT

    AA′关于DP对称,

    AA′DP

    ∴∠AMD90°

    ARRD

    RMAD

    MTRTRM

    MT≥4

    MT的最小值为4

    QAQMQTQMMT

    QAQM≥4

    ∴QAQM的最小值为4

    故答案为:4

    【点评】本题考查翻折变换,矩形的性质,解直角三角形等知识,解题的关键是求出MT的最小值,属于中考常考题型.


     

    相关试卷

    中考数学二轮复习考点精讲专题36 几何最值之将军饮马问题(教师版):

    这是一份中考数学二轮复习考点精讲专题36 几何最值之将军饮马问题(教师版),共27页。

    中考培优竞赛专题经典讲义 第9讲 最值问题之将军饮马问题:

    这是一份中考培优竞赛专题经典讲义 第9讲 最值问题之将军饮马问题,共19页。

    中考经典几何模型与最值问题 专题13 将军饮马模型与最值问题试卷:

    这是一份中考经典几何模型与最值问题 专题13 将军饮马模型与最值问题试卷,文件包含专题13将军饮马模型与最值问题教师版docx、专题13将军饮马模型与最值问题学生版docx等2份试卷配套教学资源,其中试卷共38页, 欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map