所属成套资源:2023年中考二轮集训20讲专题过关练习测试卷
2023年中考集训20讲专题05:燕尾角型三角形
展开这是一份2023年中考集训20讲专题05:燕尾角型三角形,文件包含专题05燕尾角型三角形-老师版docx、专题05燕尾角型三角形-学生版docx等2份试卷配套教学资源,其中试卷共21页, 欢迎下载使用。
专题05:燕尾角型三角形-2022年中考数学解题方法终极训练
一、单选题
1.如图所示,∠A+∠B+∠C+∠D+∠E的结果为( )
A.90° B.360° C.180° D.无法确定
【答案】C
【解析】【详解】如图,连接BC,
∵∠D+∠E+∠DOE=∠BOC+∠OCB+∠BOC=180°,∠DOE=∠BOC,
∴∠D+∠E=∠OBC+∠OCB,
又∵∠A+∠ABO+∠ACO+∠OBC+∠OCB=180°,
∴∠A+∠ABO+∠ACO+∠D+∠E=180°.
故选C.
2.如图,已知在中,,现将一块直角三角板放在上,使三角板的两条直角边分别经过点,直角顶点D落在的内部,则( ).
A. B. C. D.
【答案】C
【解析】由三角形内角和定理可得∠ABC+∠ACB+∠A=180°,即∠ABC+∠ACB=180-∠A=140°,再说明∠DBC+∠DCB=90°,进而完成解答.
【详解】解:∵在△ABC中,∠A=40°
∴∠ABC+∠ACB=180-∠A=140°
∵在△DBC中,∠BDC=90°
∴∠DBC+∠DCB=180°-90°=90°
∴40°-90°=50°
故选C.
【点评】本题主要考查三角形内角和定理,灵活运用三角形内角和定理成为解答本题的关键.
3.在社会实践手工课上,小茗同学设计了一个形状如图所示的零件,如果,,那么的度数是( ).
A. B. C. D.
【答案】A
【解析】延长BE交CF的延长线于O,连接AO,根据三角形内角和定理求出再利用邻补角的性质求出,再根据四边形的内角和求出,根据邻补角的性质即可求出的度数.
【详解】延长BE交CF的延长线于O,连接AO,如图,
∵
∴
同理得
∵
∴
∵
∴
∴
∴,
故选:A.
【点评】本题考查三角形内角和定理,多边形内角和,三角形的外角的性质,邻补角的性质,解题关键是会添加辅助线,将已知条件联系起来进行求解.三角形外角的性质:三角形的一个外角等于与它不相邻的两个内角的和;邻补角性质:邻补角互补;多边形内角和:.
4.如图,在三角形纸片ABC中,∠A=60°,∠B=70°,将纸片的一角折叠,使点C落在△ABC外,若∠2=18°,则∠1的度数为( )
A.50° B.118° C.100° D.90°
【答案】B
【解析】在△ABC中利用三角形内角和定理可求出∠C的度数,由折叠的性质,可知:∠CDE=∠C′DE,∠CED=∠C′ED,结合∠2的度数可求出∠CED的度数,在△CDE中利用三角形内角和定理可求出∠CDE的度数,再由∠1=180°﹣∠CDE﹣∠C′DE即可求出结论.
【详解】解:在△ABC中,∠A=60°,∠B=70°,
∴∠C=180°﹣∠A﹣∠B=50°.
由折叠,可知:∠CDE=∠C′DE,∠CED=∠C′ED,
∴∠CED==99°,
∴∠CDE=180°﹣∠CED﹣∠C=31°,
∴∠1=180°﹣∠CDE﹣∠C′DE=180°﹣2∠CDE=118°.
故选:B.
【点评】本题考查了三角形内角和定理以及折叠的性质,利用三角形内角和定理及折叠的性质求出∠CDE的度数是解题的关键.
5.如图,在△ABC中,∠A=20°,∠ABC与∠ACB的角平分线交于D1,∠ABD1与∠ACD1的角平分线交于点D2,依此类推,∠ABD4与∠ACD4的角平分线交于点D5,则∠BD5C的度数是( )
A.24° B.25° C.30° D.36°
【答案】B
【解析】【详解】∵∠A=20°,∠ABC与∠ACB的角平分线交于D1,
∴∠D1BC+∠D1CB=(∠ABC+∠ACB)= (180°-∠A),
∴∠=180°- (180°-∠A)= ∠A+90°=100°,
同理:∠=60°,∠=40°,∠=30°,∠=25°.
故选B
二、填空题
6.如图,∠A+∠B+∠C+∠D+∠E=_____.
【答案】
【解析】利用三角形的外角的性质将五个角转化为三角形的三个角的和即可.
【详解】解:利用三角形的外角的性质得:
,,
所以,
故答案为:.
【点评】本题考查了多边形的内角与外角及三角形的内角和与外角和的知识,解题的关键是能够正确的将几个角转化为三个角,难度不大.
7.如图,若,则____________.
【答案】230°
【解析】根据三角形外角的性质,得到∠EOC=∠E+∠2=115°,∠2=∠D+∠C,∠EOC=∠1+∠F=115°,∠1=∠A+∠B,即可得到结论.
【详解】解:如图
∵∠EOC=∠E+∠2=115°,∠2=∠D+∠C,
∴∠E+∠D+∠C=115°,
∵∠EOC=∠1+∠F=115°,∠1=∠A+∠B,
∴∠A+∠B+∠F=115°,
∴∠A+∠B+∠C+∠D+∠E+∠F=230°,
故答案为:230°.
【点评】本题主要考查三角形内角和定理和三角形外角的性质,解决本题的关键是要熟练掌握三角形外角性质.
8.如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=__.
【答案】360°
【解析】连接CF,根据三角形的外角得到由三角形外角的性质可得:∠2=∠G+∠H,∠3=∠A+∠B,∠1=∠D+∠E=∠4+∠5,根据四边形的内角和为360°,可得:∠2+∠3+∠GFE+∠4+∠5+∠DCB=360°即∠G+∠H+∠A+∠B+∠GFE+∠D+∠E+∠DCB=360°.
【详解】解:如图,连接FC,
由三角形外角的性质可得:
∠2=∠G+∠H,
∠3=∠A+∠B,
∠1=∠D+∠E=∠4+∠5,
根据四边形的内角和为360°,可得:∠2+∠3+∠GFE+∠4+∠5+∠DCB=360°
即∠G+∠H+∠A+∠B+∠GFE+∠D+∠E+∠DCB=360°,
故答案为360°.
【点评】本题考查了三角形的内角与外角,解决本题的关键是熟记三角形的外角的性质.
9.如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=__.
【答案】720°
【解析】根据三角形的外角等于与它不相邻的两个内角的和,可得∠2与∠H、∠G的关系,∠1与∠2、∠D的关系,根据多边形的内角和公式,可得答案.
【详解】解:如图:
由三角形的外角等于与它不相邻的两个内角的和,得
∠2=∠H+∠G,∠1=∠2+∠D,
∠1=∠H+∠G+∠D,
∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H
=∠A+∠B+∠C+∠E+∠F+∠H+∠G+∠D
=180°×(6-2)
=270°.
故答案为:720°.
【点评】本题考查了多边形的内角与外角,先求出∠1=∠H+∠G+∠D,再求出多边形的内角和.
10.如图,在中,,,平分,平分,则______.
【答案】
【解析】先根据角平分线的性质求出的度数,再利用三角形内角和定理即可求解.
【详解】解:∵平分,平分,
∴,
∴.
【点评】本题考查了角平分线的性质及三角形内角和定理.熟练掌握三角形内角和定理是解题的关键.
三、解答题
11.如图所示,已知四边形,求证.
【答案】见解析
【解析】方法1连接BC,根据三角形内角和定理可得结果;
方法2 作射线,根据三角形的外角性质得到,,两式相加即可得到结论;
方法3延长BD,交AC于点E,两次运用三角形外角的性质即可得出结论.
【详解】方法1如图所示,连接BC.
在中,,即.
在中,,
;
方法2如图所示,连接AD并延长.
是的外角,
.
同理,.
.
即.
方法3如图所示,延长BD,交AC于点E.
是的外角,
.
是的外角,
.
.
【点评】本题考查了三角形的外角性质:解题的关键是知道三角形的任一外角等于与之不相邻的两内角的和.也考查了三角形内角和定理.
12.如图,已知分别交的边、于、,交的延长线于,,,,求的度数.
【答案】.
【解析】根据三角形的内角和定理即可求解
【详解】解:在中,=--,
∴∠DEC=
【点评】本题主要考查三角形内角和定理和外角的性质,掌握三角形内角和为180°及三角形的一个外角等于不相邻两个内角的和是解题的关键.
13.如图,是的平分线,CH是的平分线,与CH交于点,若,,求的度数.
【答案】.
【解析】根据三角形的外角的性质得出燕尾角的基本图形的结论得出∠BDC、∠BOC,在根据角平分线的性质即可得出
【详解】解:由燕尾角的基本图形与结论可得,
①
②
是的平分线,是的平分线
,.
①-②得,.
【点评】本题考查了三角形的内角和定理,角平分线的定义.注意利用“8字形”的对应角相等求出角的关系是解题的关键,要注意整体思想的利用.
14.如图,、分别平分和,若,,求的度数.
【答案】.
【解析】根据三角形内角和定理用∠B、∠M表示出∠BAM-∠BCM,再用∠B、∠M表示出∠MAD-∠MCD,再根据角平分线的定义可得∠BAM-∠BCM=∠MAD-∠MCD,然后求出∠M与∠B、∠D关系,代入数据进行计算即可得解;
【详解】解:根据三角形内角和定理,∠B+∠BAM=∠M+∠BCM,
∴∠BAM-∠BCM=∠M-∠B,
同理,∠MAD-∠MCD=∠D-∠M,
∵AM、CM分别平分∠BAD和∠BCD,
∴∠BAM=∠MAD,∠BCM=∠MCD,
∴∠M-∠B=∠D-∠M,
∴∠M=(∠B+∠D)=(42°+54°)=48°;
【点评】本题考查了三角形的内角和定理,角平分线的定义.注意利用“8字形”的对应角相等求出角的关系是解题的关键,要注意整体思想的利用.
15.如图,在中,与的平分线相交于点,试说明、之间的数量关系.
【答案】,见解析.
【解析】根据角平分线的性质和三角形的内角和定理得出∠BIC=180°-(∠ABC+∠ACB)=180°-90°+∠A=90°+∠A,
【详解】解:在中,∠ABC+∠ACB=180°-∠A
∵与的平分线相交于点,
∴,,
在中
.
【点评】本题主要考查三角形内角和定理,以及角平分线的性质定理,熟练掌握相关的性质是解题的关键
16.如图,是上一点,是上一点,,相交于点,,,,求的度数.
【答案】.
【解析】根据三角形的外角性质先求出的度数,再利用三角形内角和定理即可注出的度数.
【详解】解:在△ADC中,
,
在在△BDF中,
.
【点评】本题考查了三角形内角和定理及三角形外角的性质.熟练找出三角形内角与外角的关系是解题的关键.
17.如图,中,(1)若、的三等分线交于点、,请用表示、;(2)若、的等分线交于点、(、依次从下到上),请用表示,.
【答案】(1),;(2),.
【解析】(1)根据三角形内角和可得,再根据、的三等分线交于点、,可得然后根据三角形内角和定理即可用含表示、;
(2)根据(1)中所体现的规律解答即可.
【详解】解:(1)∵,
∴,
∵、的三等分线交于点、,
∴
∴,
;
(2)由(1)可知,
.
【点评】本题考查了三角形内角和定理及角的n等分线的性质.熟练应用三角形内角和定理求角的度数是解题的关键.
18.模型规律:如图1,延长交于点D,则.因为凹四边形形似箭头,其四角具有“”这个规律,所以我们把这个模型叫做“箭头四角形”.
模型应用
(1)直接应用:
①如图2,,则__________;
②如图3,__________;
(2)拓展应用:
①如图4,、的2等分线(即角平分线)、交于点,已知,,则__________;
②如图5,、分别为、的10等分线.它们的交点从上到下依次为、、、…、.已知,,则__________;
③如图6,、的角平分线、交于点D,已知,则__________;
④如图7,、的角平分线、交于点D,则、、之同的数量关系为__________.
【答案】(1)①110;②260;(2)①85;②110;③142;④∠B-∠C+2∠D=0
【解析】(1)①根据题干中的等式直接计算即可;
②同理可得∠A+∠B+∠C+∠D+∠E+∠F=∠BOC+∠DOE,代入计算即可;
(2)①同理可得∠BO1C=∠BOC-∠OBO1-∠OCO1,代入计算可得;
②同理可得∠BO7C=∠BOC-(∠BOC-∠A),代入计算即可;
③利用∠ADB=180°-(∠ABD+∠BAD)=180°-(∠BOC-∠C)计算可得;
④根据两个凹四边形ABOD和ABOC得到两个等式,联立可得结论.
【详解】解:(1)①∠BOC=∠A+∠B+∠C=60°+20°+30°=110°;
②∠A+∠B+∠C+∠D+∠E+∠F=∠BOC+∠DOE=2×130°=260°;
(2)①∠BO1C=∠BOC-∠OBO1-∠OCO1
=∠BOC-(∠ABO+∠ACO)
=∠BOC-(∠BOC-∠A)
=∠BOC-(120°-50°)
=120°-35°
=85°;
②∠BO7C=∠BOC-(∠BOC-∠A)
=120°-(120°-50°)
=120°-10°
=110°;
③∠ADB=180°-(∠ABD+∠BAD)
=180°-(∠BOC-∠C)
=180°-(120°-44°)
=142°;
④∠BOD=∠BOC=∠B+∠D+∠BAC,
∠BOC=∠B+∠C+∠BAC,
联立得:∠B-∠C+2∠D=0.
【点评】本题主要考查了新定义—箭头四角形,利用了三角形外角的性质,还考查了角平分线的定义,图形类规律,解题的关键是理解箭头四角形,并能熟练运用其性质.
相关试卷
这是一份中考数学二轮复习培优专题05三角形求角度模型之燕尾角 (含答案),共13页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年中考集训20讲专题08:8型相似三角形
这是一份2023年中考集训20讲专题07:A型相似三角形,文件包含专题07A型相似三角形-老师版docx、专题07A型相似三角形-学生版docx等2份试卷配套教学资源,其中试卷共36页, 欢迎下载使用。