|试卷下载
终身会员
搜索
    上传资料 赚现金
    2023届广东省华附、省实、广雅、深中高三上学期四校联考数学试题(word版)
    立即下载
    加入资料篮
    2023届广东省华附、省实、广雅、深中高三上学期四校联考数学试题(word版)01
    2023届广东省华附、省实、广雅、深中高三上学期四校联考数学试题(word版)02
    2023届广东省华附、省实、广雅、深中高三上学期四校联考数学试题(word版)03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023届广东省华附、省实、广雅、深中高三上学期四校联考数学试题(word版)

    展开
    这是一份2023届广东省华附、省实、广雅、深中高三上学期四校联考数学试题(word版),共22页。试卷主要包含了考生必须保持答题卡的整洁, 已知,则下列说法正确的是等内容,欢迎下载使用。

    华附省实广雅深中2023届高三四校联考

    数学

    本试卷分选择题和非选择题两部分,共4页,满分150分,考试用时120分钟.

    注意事项:

    1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的校名姓名考号座位号等相关信息填写在答题卡指定区域内,并用2B铅笔填涂相关信息.

    2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案;不能答在试卷上.

    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.

    4.考生必须保持答题卡的整洁.

    选择题:本题共8小题,每小题5分,共40.在每小题给出的四个选项中,只有一项是符合题目要求的.

    1. 已知集合,则    ).

    A {3} B. {13} C. {34} D. {134}

    2. 已知i为虚数单位,则复数   

    A.  B.  C.  D.

    3. 已知在等腰中,,点在线段上,且,则的值为(   

    A.  B.  C.  D.

    4. 古希腊亚历山大时期的数学家帕普斯在《数学汇编》第3卷中记载着一个确定重心的定理:如果同一平面内的一个闭合图形的内部与一条直线不相交,那么该闭合图形围绕这条直线旋转一周所得到的旋转体的体积等于闭合图形面积乘以该闭合图形的重心旋转所得周长的积,即表示平面图形绕旋转轴旋转的体积,表示平面图形的面积,表示重心绕旋转轴旋转一周的周长).如图直角梯形,已知,则重心的距离为(   

    A.  B.  C. 3 D. 2

    5. 已知双曲线的焦点关于渐近线的对称点在双曲线上,则双曲线的离心率为(   

    A. 2 B.  C.  D.

    6. 已知数列满足,则的前项积的最大值为(   

    A.  B.  C. 1 D. 4

    7. 若函数在其定义域内存在实数满足,则称函数局部奇函数”.知函数是定义在局部奇函数,则实数的取值范围是(   

    A.  B.  C.  D.

    8. 如图,在三棱锥中,平面为线段中点,分别为线段和线段上任意一点,则的最小值为(   

    A.  B.  C.  D. 2

    二、多选题:本题共4小题,每小题5分,共20.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0.

    9. 已知,则下列说法正确的是(   

    A.  B.

    C.  D.

    10. 已知函数满足,其图象向右平移个单位后得到函数的图象,且上单调递减,则(   

    A.

    B. 函数的图象关于对称

    C. 可以等于5

    D. 的最小值为2

    11. 已知为坐标原点,点为抛物线焦点,点,直线交抛物线两点(不与点重合),则以下说法正确的是(   

    A.

    B. 存在实数,使得

    C. ,则

    D. 若直线的倾斜角互补,则

    12. 已知定义在上的函数的图像连续不间断,当时,,且当时,,则下列说法正确的是(   

    A.

    B. 上单调递增

    C. ,则

    D. 在区间内的两个零点,且,则

    三、填空题:本题共4小题,每小题5分,共20.

    13. 已知圆,若过定点有且仅有一条直线被圆截得弦长为2,则可以是__________.(只需要写出其中一个值,若写出多个答案,则按第一个答案计分.

    14. 已知在四面体中,,则该四面体外接球的表面积为__________.

    15. 已知函数,若函数的图象经过四个象限,则实数的取值范围是__________.

    16. 已知数列满足,记(其中表示不大于的最大整数,比如),则__________.(参考数据:

    四、解答题:本题共6小题,共70.解答应写出文字说明,证明过程或演算步骤.

    17. 已知正项数列的前项和为.

    1求数列的通项公式;

    2,数列的前项和为,证明:.

    18. 中,内角所对的边分别为,且.

    1的大小;

    2在边上,且,求的最大值.

    19. 甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍末出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜概率为,乙获胜的概率为,各局比赛结果相互独立.

    1求乙只赢1局且甲赢得比赛的概率;

    2为比赛决出胜负时的总局数,求的分布列和期望.

    20. 如图,四棱锥中,已知,且与平面所成的角为.

    1证明:

    2若点的中点,求平面与平面夹角的余弦值.

    21. 已知椭圆,斜率为的直线与椭圆只有一个公共点

    1求椭圆的标准方程;

    2过椭圆右焦点的直线与椭圆相交于两点,点在直线上,且轴,求直线轴上的截距.

    22. 已知函数(其中是自然对数底数).

    1的最小值;

    2若过点可作曲线的两条切线,求证:.(参考数据:

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    华附省实广雅深中2023届高三四校联考

    1.【答案】B

    2.【答案】C

    3.【答案】B

    4.【答案】A

    5.【答案】C

    6.【答案】C

    7.【答案】D

    8.【答案】C

    二、多选题:本题共4小题,每小题5分,共20.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0.

    9.【答案】BD

    10.【答案】BCD

    11.【答案】ACD

    12.【答案】ABD

    三、填空题:本题共4小题,每小题5分,共20.

    13.

    【答案】1##

    14.

    【答案】##

    15.

    【答案】

    16.

    【答案】6064

    四、解答题:本题共6小题,共70.解答应写出文字说明,证明过程或演算步骤.

    17. 已知正项数列的前项和为.

    1求数列的通项公式;

    2,数列的前项和为,证明:.

    【答案】(1   

    2证明见解析

    【解析】

    【分析】(1)找到的递推,根据递推求通项.

    (2)代入第一问答案,然后裂项相消求和.

    【小问1详解】

    因为

    所以

    -①得

    所以

    因为数列各项均为正数,所以.

    ,所以

    所以数列是以2为首项,2为公差的等差数列,

    所以的通项公式为

    【小问2详解】

    所以

    因为,所以

    所以.

    18. 中,内角所对的边分别为,且.

    1的大小;

    2在边上,且,求的最大值.

    【答案】(1   

    2.

    【解析】

    【分析】1)根据正弦定理可推得,整理可得,即可解出

    2)解法一:向量法.由题意知.根据向量的运算求出,即可得到,令,换元整理可得.然后根据基本不等式即可求出的最大值;解法二:设,根据,得到.根据余弦定理即可推出,换元可得,根据基本不等式即可求得最值.

    【小问1详解】

    因为

    根据正弦定理可得:

    可化为:

    因为,所以.

    所以原式可化为:

    因为,所以,所以原式可化为,即.

    因为,所以.

    【小问2详解】

    方法一:因为,故

    .

    .

    所以,

    .

    因为,所以

    当且仅当,即,即时等号成立.

    所以,

    所以,的最大值为.

    方法二:设,则

    中,由余弦定理有: ,即

    中,由余弦定理有:

    ,所以.

    所以,整理可得

    由①②可得:.

    所以,

    所以.

    因为,所以

    当且仅当,即,即时等号成立.

    所以,

    所以,的最大值为.

    19. 甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍末出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.

    1求乙只赢1局且甲赢得比赛的概率;

    2为比赛决出胜负时的总局数,求的分布列和期望.

    【答案】(1   

    2分布列见解析,

    【解析】

    【分析】1)乙只赢1局且甲赢得比赛,对于甲而言,可能是“负胜胜”,“胜负胜胜”两种情况,根据独立事件,互斥事件的概率公式求解;

    2的可能取值为,分别求出每种情况的概率,按照步骤求分布列即可.

    【小问1详解】

    记事件表示乙只赢局且甲赢得比赛表示局甲获胜

    局乙获胜,则.

    事件与事件互斥,各局比赛结果相互独立.

    由概率加法公式和乘法公式,有

    【小问2详解】

    的可能取值为

    的分布列为

    2

    3

    4

    5

    所以.

    20. 如图,四棱锥中,已知,且与平面所成的角为.

    1证明:

    2若点的中点,求平面与平面夹角的余弦值.

    【答案】(1证明见解析   

    2

    【解析】

    【分析】1)根据题意,如图所示,过点交面于点,连,延长于点可得平面,即再根据四边形为平行四边形,即可得证;

    (2)以为原点,所在直线分别为轴,轴,轴建立如图所示的空间直角坐标系即可得到各点的坐标,结合法向量以及二面角的计算公式,即可得到结果.

    【小问1详解】

    如图所示,过点

    于点,连,延长于点.

    因为与底面所成的角为

    所以,所以.

    因为,则

    因为,所以,且

    ,所以平面

    所以.

    是等边三角形,则

    ,且,所以四边形为平行四边形,故

    所以.

    【小问2详解】

    因为两两垂直,则以为原点,所在直线分别为轴,轴,轴建立如图所示的空间直角坐标系.

    设平面的一个法向量为

    ,解得,令,则

    设平面的一个法向量设

    ,即

    所以

    所以平面与平面夹角的余弦值为

    21. 已知椭圆,斜率为的直线与椭圆只有一个公共点

    1求椭圆的标准方程;

    2过椭圆右焦点的直线与椭圆相交于两点,点在直线上,且轴,求直线轴上的截距.

    【答案】(1   

    2

    【解析】

    【分析】(1)根据点在椭圆上可得,又因为直线与椭圆只有一个交点,可得判别式等于零得到方程即可求解; (2)设出直线的方程,利用韦达定理,再表示出轴上的截距关于坐标的等量关系,即可求解.

    【小问1详解】

    依题意,直线的方程为,即

    ,消去.

    由于直线与椭圆只有一个公共点,故

    因为在椭圆上,所以

    ,整理得

    解得

    故椭圆的标准方程:.

    【小问2详解】

    方法一:依题意直线斜率不为0

    可设直线,则

    联立椭圆方程,可得

    由韦达定理得

    进而,有

    由直线的方程为,得

    直线AC轴上的截距为

    故直线轴的上截距为.

    方法二:设,则,则直线的方程为

    则直线轴的截距为

    垂直于轴,

    所以直线轴交点为,截距为.

    不垂直于轴,设直线的方程为.

    与椭圆方程联立,得

    由韦达定理有.

    直线轴的截距为

    又因为

    所以

    所以

    所以

    所以

    故直线轴上的截距为.

    方法三:右焦点为,直线轴相交于点的中点为

    垂直于轴,则

    所以直线轴交点为,截距为.

    不垂直于轴,设直线的方程为

    与椭圆方程联立,得

    由韦达定理有

    ,得

    故直线的斜率分别为

    所以.

    因为

    所以,即,故三点共线.

    因为对于任意直线点都是唯一确定的,

    所以,直线轴交点为,即直线轴上的截距为.

    22. 已知函数(其中是自然对数底数).

    1的最小值;

    2若过点可作曲线的两条切线,求证:.(参考数据:

    【答案】(11    2证明见解析

    【解析】

    【分析】(1)求函数导函数,应用单调性求函数的最小值;

    (2)把曲线的两条切线转化为两个零点问题,再转化证明最小值大于零即可.

    【小问1详解】

    函数定义域为

     

    所以上单调递增,且

    所以当时,单调递减;

    时,单调递增,.

    所以.

    【小问2详解】

    设切点为,则

    处的切线为

    由于切线过点,所以

    而由(1),上单调递增,不同的值对应的切线斜率不同

    ,所以过点可作曲线的两条切线当且仅当关于的方程有两个实根.

    ①当时,上单调递减,至多有一个实根,不合题意;

    ②当时,

    时,单调递增;

    时,单调递减.

    时,时,

    所以当且仅当时,有两个实根,

    即当且仅当时,过点可作曲线的两条切线.

    只需证时,.

    ,则

    时,单调递减;

    时,单调递增,

    所以,即.*

    ,只需证.

    1)当时,由

    .

    ,则

    时,单调递减;

    时,单调递增;

    时,单调递减.

    所以,则.

    2)当时,

    ,则

    所以上单调递增,

    所以上单调递增,,即

    所以上单调递增,.

    综上得:原不等式成立.

     

    相关试卷

    2023届广东省华附、省实、广雅、深中高三上学期四校联考数学试题(PDF版): 这是一份2023届广东省华附、省实、广雅、深中高三上学期四校联考数学试题(PDF版),共22页。

    2023届广东省华附、省实、广雅、深中高三上学期四校联考数学试题(PDF版): 这是一份2023届广东省华附、省实、广雅、深中高三上学期四校联考数学试题(PDF版),共22页。

    2023广州华附、省实、广雅、深中高三上学期四校期末联考试题数学含答案: 这是一份2023广州华附、省实、广雅、深中高三上学期四校期末联考试题数学含答案,共24页。试卷主要包含了考生必须保持答题卡的整洁,已知,则下列说法正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map