|试卷下载
终身会员
搜索
    上传资料 赚现金
    2023届湖南省邵阳市高三上学期1月第一次联考(一模)数学试题(解析版)
    立即下载
    加入资料篮
    2023届湖南省邵阳市高三上学期1月第一次联考(一模)数学试题(解析版)01
    2023届湖南省邵阳市高三上学期1月第一次联考(一模)数学试题(解析版)02
    2023届湖南省邵阳市高三上学期1月第一次联考(一模)数学试题(解析版)03
    还剩20页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023届湖南省邵阳市高三上学期1月第一次联考(一模)数学试题(解析版)

    展开
    这是一份2023届湖南省邵阳市高三上学期1月第一次联考(一模)数学试题(解析版),共23页。试卷主要包含了保持答题卡的整洁等内容,欢迎下载使用。

    2023年邵阳市高三第一次联考试题卷
    数学
    本试卷共4页,22个小题。满分150分。考试用时120分钟。
    注意事项:
    1.答卷前,考生务必将自己的姓名、考生号填写在答题卡上。将条形码横贴在答题卡上“条形码粘贴区”。
    2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.保持答题卡的整洁。考试结束后,只交答题卡,试题卷自行保存。
    一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)
    1.已知全集,集合,,则( )
    A. B. C. D.
    2.已知复数满足,则( )
    A. B. C. D.
    3.一个圆锥的侧面展开图恰好是一个半径为1的半圆,则该圆锥的全面积为( )
    A. B. C. D.
    4.设向量,满足,,则( )
    A.2 B. C.3 D.
    5.某铅笔工厂有甲、乙两条生产线,甲生产线的产品次品率为10%,乙生产线的产品次品率为5%.现在某客户在该厂定制生产同一种铅笔产品,由甲、乙两条生产线同时生产,且甲生产线的产量是乙生产线产量的1.5倍.现在从这种铅笔产品中任取一件,则取到合格产品的概率为( )
    A.0.92 B.0.08 C.0.54 D.0.38
    6.已知A,B,C分别是的内角,,,则C的值是( )
    A. B. C. D.
    7.设若函数有且只有三个零点,则实数m的取值范围为( )
    A. B. C. D.
    8.截角四面体是一种半正八面体,可由四面体经过适当的截角,即截去四面体的四个顶点所产生的多面体.如图所示,将棱长为的正四面体沿棱的三等分点作平行于底面的截面,得到所有棱长均为a的截角四面体,则下列说法错误的是( )

    A.二面角的余弦值为
    B.该截角四面体的体积为
    C.该截角四面体的外接球表面积为
    D.该截角四面体的表面积为
    二、多选题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分)
    9.随着时代与科技的发展,信号处理以各种方式被广泛应用于医学、声学,密码学,计算机科学、量子力学等各个领域.而信号处理背后的“功臣”就是正弦型函数,的图象就可以近似的模拟某种信号的波形,则下列说法正确的有( )
    A.函数的图象关于直线对称
    B.函数的图象关于点对称
    C.函数为周期函数,且最小正周期为
    D.函数的导函数的最大值为4
    10.已知,都是定义在上的函数,对任意x,y满足,且,则下列说法正确的有( )
    A. B.函数的图象关于点对称
    C. D.若,则
    11.“蒙日圆”涉及几何学中的一个著名定理,该定理的内容为:椭圆上任意两条互相垂直的切线的交点,必在一个与椭圆同心的圆上.称此圆为该椭圆的“蒙日圆”,该圆由法国数学家加斯帕尔•蒙日(1746-1818)最先发现.已知长方形R的四条边均与椭圆相切,则下列说法正确的有( )

    A.椭圆C的离心率为 B.椭圆C的蒙日圆方程为
    C.椭圆C的蒙日圆方程为 D.长方形R的面积的最大值为18
    12.已知函数,,则下列说法正确的有( )
    A.在上是增函数
    B.,不等式恒成立,则正实数的最小值为
    C.若有两个零点,,则
    D.若,且,则的最大值为
    三、填空题(本大题共4小题,每小题5分,共20分)
    13.的展开式中不含的各项系数之和______.
    14.将函数的图象向左平移个单位长度得到函数的图象,如图所示,图中阴影部分的面积为,则______.

    15.已知圆与圆相交于A,B两点,则公共弦AB所在的直线方程为______(2分)______(3分).
    16.在正方体中,点满足,且,直线与平面所成角为,若二面角的大小为,则的最大值是______.
    四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)
    17.(本小题满分10分)已知数列满足,,,且.
    (1)求数列的通项公式;
    (2)若,求数列的前n项和.
    18.(本小题满分12分)如图,为内的一点,记为,记为,且,在中的对边分别记为m,n,,,.

    (1)求;
    (2)若,,,记,求线段的长和面积的最大值.
    19.(本小题满分12分)如图所示,在多面体中,底面为直角梯形,,,侧面为菱形,平面平面M为棱BE的中点.

    (1)若上有一点N满足平面,确定点N的位置并证明;
    (2)若,,求平面与平面所成二面角的正弦值.
    20.(本小题满分12分)新冠肺炎疫情暴发以来,各级人民政府采取有效防控措施,时常采用10人一组做核酸检测(俗称混检).某地在核酸检测中发现某一组中有1人核酸检测呈阳性,为了能找出这1例阳性,需要通过做血清检测,血清检测结果呈阳性的即为感染人员,呈阴性的表示没被感染.拟采用两种方案检测:
    方案甲:将这10人逐个做血清检测,直到能确定感染人员为止.
    方案乙:将这10人的血清随机等分成两组,随机将其中一组的血清混在一起检测,若结果为阳性,则表示感染人员在该组中,然后再对该组中每份血清逐个检测,直到能确定感染人员为止;若结果呈阴性,则对另一组中每份血清逐个检测,直到能确定感染人员为止.把采用方案甲,直到能确定感染人员为止,检测的次数记为X.
    (1)求X的数学期望;
    (2)如果每次检测的费用相同,以检测费用的期望作为决策依据,应选择方案甲与方案乙中的哪一种?
    21.(本小题满分12分)已知抛物线的焦点为F,且F与圆上点的距离的最大值为5.
    (1)求抛物线C的方程;
    (2)若点P在圆M上,PA,PB是抛物线C的两条切线,A,B是切点,求面积的最大值.
    22.(本小题满分12分)设函数.
    (1)讨论函数的单调性;
    (2)当时,记,是否存在整数t,使得关于x的不等式有解?若存在,请求出t的最小值;若不存在,请说明理由.

    2023年邵阳市高三第一次联考参考答案与评分标准
    数学
    一、单选题(本大题共8小题,每小题5分,共40分)
    1.B
    2.A 【详解】因为,,,
    所以,,
    故选:A.
    3.A 【详解】母线长为1,设底面圆半径为r,
    则,∴,
    故圆锥的全面积为,
    故选:A.
    4.D 【详解】因为,,
    以上两式相减可得,,
    所以,即,
    故选:D.
    5.A 【详解】从这种铅笔中任取一件抽到甲的概率为0.6,抽到乙的概率是0.4,
    抽到甲车间正品的概率,
    抽到乙车间次品的概率,
    任取一件抽到正品的概率.
    故选:A.
    6.A
    7.C 【详解】令,则,
    令,得;令,得;
    所以在上单调递减,在上单调递增,故,
    又因为对于任意,在总存在,使得,
    在上由于的增长速率比的增长速率要快得多,所以总存在,使得,
    所以在与上都趋于无穷大;
    令,则开口向下,对称轴为,
    所以在上单调递增,在上单调递增,故,
    因为函数有且只有三个零点,
    而已经有唯一零点,所以必须有两个零点,则,即,解得或,
    当时,,则,
    即在处取不到零,点,故至多只有两个零点,不满足题意,
    当时,,则,所以在处取得零点,
    结合图像又知与必有两个交点,故在与必有两个零点,
    所以有且只有三个零点,满足题意;
    综上:,即.故选:C.

    8.D 【详解】如下图所示:
    取BC的中点为W,分别连接和,因为,,
    所以为的二面角,,,
    所以,所以,
    在直角三角形中,,所以,
    所以二面角的余弦值为,
    所以二面角的余弦值为,故A正确
    因为棱长为的正四面体的高,
    所以,故B正确;
    设外接球的球心为O,的中心为,的中心为,
    因为截角四面体上下底面距离为,所以,
    所以,所以,
    所以,所以,
    所以,故C正确;
    由正四面体中,题中截角四面体由4个边长为a的正三角形,
    4个边长为a的正六边形构成,故,故D错误.
    故选:D.

    二、多选题(本大题共4小题,每小题5分,共20分)
    9.ABD 【详解】因为函数,定义域为,
    对于A,

    所以函数的图象关于直线对称,故A正确;
    对于B,,
    所以函数为奇函数,图象关于点对称,故B正确;
    对于C,由题知,故C错误;
    对于D,由题可知,故D正确.
    故选:ABD.
    10.ABD 【详解】对于A,令,代入已知等式得,得,再令,,代入已知等式得,
    可得,结合得,,故A正确;
    对于B,再令,代入已知等式得,
    将,代入上式,得,∴函数为奇函数,
    ∴函数关于点对称,故B正确;
    对于C,再令,代入已知等式,
    得,∵,∴,
    又∵,∴,
    ∵,∴,故C错误;
    对于D,分别令和,代入已知等式,得以下两个等式:
    ,,
    两式相加易得,所以有,
    即:,
    有:,
    即:,∴为周期函数,且周期为3,
    ∵,∴,∴,
    ∴,
    ∴,故D正确.
    故选:ABD.
    11.ACD 【详解】椭圆C的离心率为,
    设两条互相垂直的切线的交点为,
    当题设中的两条互相垂直的切线中有斜率不存在或斜率为0时,可得点P的坐标是,或.
    当题设中的两条互相垂直的切线中的斜率均存在且均不为0时,可设点P的坐标是,(,且),
    所以可设曲线C的过点P的切线方程是.
    由,得,
    由其判别式的值为0,得,
    因为,(,为过P点互相垂直的两条直线的斜率)是这个关于k的一元二次方程的两个根,
    所以,
    由此,得,
    即的蒙日圆方程为:;
    因为蒙日圆为长方形的外接圆,设,,
    则矩形面积公式为,显然,
    即矩形四条边都相等,为正方形时,.故答案为:ACD.

    12.ABD 【详解】对于A,当时,,令,则,,
    ∵,∴当时,恒成立,∴在上单调递增;
    ∵在上单调递增,
    ∴根据复合函数单调性可知:在上为增函数,A正确;
    对于B,当时,,又为正实数,∴,
    ∵,∴当时,恒成立,∴在上单调递增,
    则由得:,即,
    令,则,
    ∴当时,;当时,;
    ∴在上单调递增,在上单调递减,∴,
    ∴,则正实数的最小值为,B正确;
    对于C,∵,∴当时,;当时,;
    ∴在上单调递减,在上单调递增;∴,则;
    不妨设,则必有,
    若,则,等价于,
    又,则等价于;
    令,则,
    ∵,∴,∴,∴,即,
    ∴在上单调递增,∴,即,
    ∴,可知不成立,C错误;
    对于D,由,得:,
    即,
    由C知:在上单调递减,在上单调递增;
    ,∴,则,∴,
    ∴,即,∴;
    令,则,
    ∴当时,;当时,;
    ∴在上单调递增,在上单调递减,
    ∴,即的最大值为,D正确.
    故选:ABD.
    三、填空题(本大题共4小题,每小题5分,共20分)
    13.128 【详解】利用二项展开式的通项公式进行展开,设项为k,项为n,项为m.
    展开后得对每一项进行合并得,因为展开式中不含z,所以,又m得取值为,n得取值为,故得,.
    代入展开式得,又得取值为,分别带入后各项系数之和为.
    故答案为:128
    14. 【详解】设阴影左侧最高点为A,右侧最高点为D,过A作x轴的垂线,垂足为B,
    过D作x轴的垂线,垂足为C,
    由题设可得四边形为矩形且其面积为,故,故,,∴,
    故,而,故,
    解得,,而,故,
    故答案为.

    15.,2
    【详解】由题意所在的直线方程为:,即,因为圆的圆心,半径为,
    所以圆心到直线的距离为1,所以.故答案为:,2
    16. 【详解】∵,且,
    ∴P在平面上,

    设,连接,,且,
    因为平面,又平面,
    所以,又,,平面,平面,
    所以平面,平面,所以,
    同理可得,又,平面,平面,
    所以平面,
    设正方体的棱长为1,则可知为棱长为的正四面体,
    所以为等边三角形的中心,
    由题可得,得,所以,
    又∵与平面所成角为,则,
    可求得,即在以为圆心,半径的圆上,且圆在平面内,
    由平面,又∵平面,
    ∴平面平面,且两个平面的交线为,把两个平面抽象出来,如图,

    作于点,过点作交于N点,连接PN,
    ∵平面平面,平面,平面平面,
    ∴平面,平面,
    ∴,
    又,与为平面中两相交直线,
    故平面,平面,∴
    ∴为二面角的平面角,即为角,
    设,当与点不重合时,在中,
    可求得,
    若M与点重合时,即当时,可求得,也符合上式,
    故,
    ∵,,∴,∴,
    ∴,

    令,
    则,当,即时等号成立,
    ∴,故的最大值是.
    四、解答题
    17.(10分)【详解】(1)因为,,,,
    可得,, ……(1分)
    又, ……(2分)
    则当时,
    , ……(4分)
    上式对也成立,所以,; ……(5分)
    (2)由,
    可得, ……(7分)
    则数列的前项和为
    ……(9分)
    . ……(10分)
    18.(10分)【详解】(1)已知,由正弦定理可得
    ,由, ……(1分)
    ∴, ……(3分)
    ,,, ……(4分)
    ,. ……(5分)
    (2)在中,由余弦定理得知:

    即 ……(8分)

    ……(9分)
    ……(10分)
    ……(11分)
    ∴当时,. ……(12分)
    19.(12分)【详解】(1)点N为DE中点,证明如下:
    如图,连接BD,MN, ……(1分)
    因为M,N分别为BE,DE的中点,
    所以MN为的中位线,所以, ……(2分)
    又平面,平面,所以平面.
    所以N为DE的中点时满足条件; ……(4分)
    (2)取AB的中点O,连接OE,因为侧面为菱形,且,
    所以在中,,解得,
    所以,即. ……(5分)
    又因为平面平面.
    平面平面,平面所以平面,
    过作的垂线,交BD于H并延长,
    分别以OH,OA,OE所在直线为x,y,z轴建立如图所示的空间直角坐标系, ……(6分)
    设,则,
    故,,,,,
    则,,,,.
    设平面的法向量为.
    则即令,则 ……(8分)
    设平面的法向量为,
    则,即
    令,则,则 ……(10分)
    , ……(11分)
    故:平面与平面所成二面角的正弦值为. ……(12分)

    20.(12分)【详解】(1)X可取1,2,…,8,9, ……(1分)
    则,,2,…,8 ……(3分)
    , ……(5分)
    所以. ……(6分)
    (2)把采用方案乙,直到能确定感染人员为止,检测的次数记为Y,则Y可取2,3,4,5.
    , ……(7分)
    , ……(8分)
    , ……(9分)
    , ……(10分)
    则. ……(11分)
    设每次检测的费用均为,则方案甲的平均费用为,方案乙的平均费用为,
    因为,所以应选择方案乙. ……(12分)
    21.(12分)【详解】(1)[方法一]:利用二次函数性质求最大值
    由题意知,,设圆上的点,则.
    所以. ……(1分)
    从而有.
    因为,所以当时,. ……(2分)
    又,解之得,因此. ……(3分)
    抛物线C的方程为:. ……(4分)
    (4分)[方法二]【最优解】:利用圆的几何意义求最大值
    抛物线C的焦点为,, ……(1分)
    所以,F与圆上点的距离的最大值为,解 ……(3分)
    抛物线C的方程为: ……(4分)
    (2)[方法一]:切点弦方程韦达定义判别式求弦长求面积法
    抛物线C的方程为,即,对该函数求导得,
    设点、、,
    直线的方程为,即,即 ……(5分)
    同理可知,直线PB的方程为,
    由于点P为这两条直线的公共点,则,
    所以,点A、B的坐标满足方程,
    所以,直线的方程为, ……(7分)
    联立,可得,
    由韦达定理可得,
    所以, ……(8分)
    点P到直线AB的距离为, ……(9分)
    所以,, ……(10分)
    ∵,
    由已知可得,所以,当时,的面积取最大值. ……(12分)
    [方法二]【最优解】:切点弦法分割转化求面积三角换元求最值
    同方法一得到,. ……(7分)
    过作轴的平行线交于,则. ……(8分)
    ……(9分)
    点在圆上,则 ……(10分)
    . ……(11分)
    故当时的面积最大,最大值为32. ……(12分)
    [方法三]:直接设直线AB方程法
    设切点A,B的坐标分别为,.
    设,联立和抛物线C的方程得整理得. ……(5分)
    判别式,即,且, ……(6分)
    抛物线C的方程为,即,有.
    则,整理得,同理可得. ……(7分)
    联立方程可得点P的坐标为,即. ……(8分)
    将点P的坐标代入圆M的方程,得,整理得. ……(9分)
    由弦长公式得.
    点P到直线AB的距离为. ……(10分)
    所以
    , ……(11分)
    其中,即.
    当时,. ……(12分)
    22.(12分)解:(1)由题意得函数的定义域为
    ……(1分)
    ①当时,时,,在单调递增,
    时,,在单调递减; ……(2分)
    ②当时,恒成立,在上单调递增; ……(3分)
    ③当时,时,,在单调递增,
    时,,在单调递减; ……(4分)
    综上,当时,在单调递增,在单调递减;
    当时,恒成立,在上单调递增;
    当时,在单调递增,在单调递减. ……(5分)
    (2)当时, ……(6分)
    ∴,∴单调递增,又,
    所以存在唯一的,使得 ……(7分)
    且当时,,单调递减;
    当时,,单调递增; ……(8分)
    所以 ……(9分)
    设,,则在上单调递减,
    所以,即, ……(10分)
    若关于x的不等式有解,则,又t为整数,所以
    所以存在整数t满足题意,且t的最小值为0. ……(12分)





    相关试卷

    湖南省邵阳市2024届高三上学期第一次联考(一模)数学试题(Word版附答案): 这是一份湖南省邵阳市2024届高三上学期第一次联考(一模)数学试题(Word版附答案),共14页。试卷主要包含了保持答题卡的整洁,设,则的大小关系为,下列说法正确的有等内容,欢迎下载使用。

    湖南省邵阳市2024届高三数学上学期第一次联考试题(一模)(PDF版附解析): 这是一份湖南省邵阳市2024届高三数学上学期第一次联考试题(一模)(PDF版附解析),共11页。

    2022-2023学年湖南省邵阳市高三上学期第一次联考数学试题及答案: 这是一份2022-2023学年湖南省邵阳市高三上学期第一次联考数学试题及答案,共32页。试卷主要包含了保持答题卡的整洁,92B等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map