所属成套资源:2022-2023学年高二 数学 同步练习 人教A版(2019)选择性必修第二册
人教A版 (2019)选择性必修 第二册4.2 等差数列精品精练
展开
这是一份人教A版 (2019)选择性必修 第二册4.2 等差数列精品精练,文件包含421等差数列的概念精讲解析版docx、421等差数列的概念精讲原卷版docx等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。
4.2.1 等差数列的概念 考点一 判断是否为等差数列【例1】(2020·上海高二课时练习)下列数列中,不是等差数列的是( )A.1,4,7,10 B.C. D.10,8,6,4,2【答案】C【解析】根据等差数列的定义,可得:A中,满足(常数),所以是等差数列;B中,(常数),所以是等差数列;C中,因为,不满足等差数列的定义,所以不是等差数列;D中,满足(常数),所以是等差数列.故选:C.【一隅三反】1.(2019·山西应县一中期末(理))若是等差数列,则下列数列中也成等差数列的是( )A. B. C. D.【答案】C【解析】A: =(an+an+1)(an+1﹣an)=d[2a1+(2n﹣1)d],与n有关系,因此不是等差数列.B:== 与n有关系,因此不是等差数列.C:3an+1﹣3an=3(an+1﹣an)=3d为常数,仍然为等差数列;D: 当数列{an}的首项为正数、公差为负数时,{|an|}不是等差数列;故选:C2.(2020·全国高一课时练习)已知下列各数列,其中为等差数列的个数为( )① 4,5,6,7,8,… ② 3,0,-3,0,-6,…③ 0,0,0,0,… ④ …A.1 B.2 C.3 D.4【答案】C【解析】第一个数列是公差为的等差数列.第二个数列是摆动数列,不是等差数列.第三个是公差为的等差数列.第四个是公差为的等差数列.故有个等差数列,所以选C.3.(2020·全国课时练习)已知数列,c为常数,那么下列说法正确的是( )A.若是等差数列时,不一定是等差数列B.若不是等差数列时,一定不是等差数列C.若是等差数列时,一定是等差数列D.若不是等差数列时,一定不是等差数列【答案】D【解析】当是等差数列时,由等差数列的性质可知,一定是等差数列,A错;对于数列:1,2,4,5,令,则为等差数列,B错;当c为0时, 0,0,0,0是等差数列,但不是等差数列,C错.故选D.考点二 求等差数列的项或通项【例2】(1)(2020·兴安县第三中学期中)由=4,确定的等差数列,当an=28时,序号等于( )A.9 B.10 C.11 D.12(2)(2020·广西南宁三中开学考试)在单调递增的等差数列中,若,,则( )A. B. C.0 D.【答案】(1)A(2)C【解析】(1)因为,,所以,所以,解得故选:A(2)因为是等差数列,所以,,解得:,故选:C 【一隅三反】1.(2020·江苏江都·邵伯高级中学月考)等差数列中,,,则( )A.2 B.5C.11 D.13【答案】A【解析】因为,得①,又,得②,由①②得:,故.故选:A.2.(2020·兴安县第三中学期中)在数列中,=2,,则的值为( )A.96 B.98 C.100 D.102【答案】D【解析】因为=2,,所以数列是以为首项,为公差的等差数列,所以,所以故选:D3.(2020·广西南宁三中开学考试)数列中,,,那么这个数列的通项公式是( )A. B. C. D.【答案】B【解析】因为,所以数列是以5为首项,3为公差的等差数列,则.故选:B考点三 等差中项【例2】(1)(2020·全国高一课时练习)已知,则a,b的等差中项为( )A. B. C. D.(2)(2020·昆明市官渡区第一中学开学考试(文))已知,并且成等差数列,则的最小值为_________.【答案】(1)A(2)16【解析】(1),,的等差中项为,故选A.(2)由题可得:,故【一隅三反】1.(2020·广东濠江·金山中学高一月考)在等差数列中,若,则___________.【答案】60;【解析】在等差数列中,,,解得,.故答案为:602.(2020·全国其他(理))已知数列为等差数列,若,且与的等差中项为6,则( )A.0 B.1 C.2 D.3【答案】D【解析】设的公差为.数列为等差数列,,且与的等差中项为6,,解得,,.故选:D.3.(2019·兴安县第三中学期中)已知等差数列的前三项为,则此数列的首项=______ .【答案】【解析】依题意可得,解得,故等差数列的前三项为,所以故答案为: 考点四 证明数列为等差数列【例4】(2019·全国高一课时练习)设数列{an}满足当n>1时,an=,且a1=.(1)求证:数列为等差数列;(2)a1a2是否是数列{an}中的项?如果是,求出是第几项;如果不是,请说明理由.【答案】(1)见证明;(2) a1a2是数列{an}中的项,是第11项.【解析】(1)证明:根据题意a1=及递推关系an≠0.因为an=.取倒数得+4,即=4(n>1),所以数列是首项为5,公差为4的等差数列.(2)解:由(1),得=5+4(n-1)=4n+1,.又,解得n=11.所以a1a2是数列{an}中的项,是第11项.【一隅三反】1.(2020·全国高一课时练习)已知,在数列中,,。(1)证明:是等差数列。(2)求的值。【答案】(1)见解析;(2)【解析】(1)证明:当时,因为,所以,即。易知,所以,即。所以是首项为,公差为的等差数列。(2)由(1)知,所以,所以。2.(2019·全国课时练习)已知数列中,,数列满足.(1)求证:数列是等差数列;(2)求数列中的最大项和最小项.【答案】(1)证明见解析;(2)最小项为且,最大项为且.【解析】(1)因为,,所以又,所以数列是以为首项,1为公差的等差数列.(2)由(1)知,则.设,则在区间和上为减函数.所以当时,取得最小值为-1,当时,取得最大值为3.故数列中的最小项为且,最大项为且.3.(2020·全国高一课时练习)已知数列{an}满足(an+1-1)(an-1)=3(an-an+1),a1=2,令bn=.(1)证明:数列{bn}是等差数列;(2)求数列{an}的通项公式.【答案】(1) 见证明;(2) an=.【解析】(1)证明:,∴,即bn+1-bn=,∴{bn}是等差数列.(2)∵b1=1,∴∴an=.考点五 等差数列的单调性【例5】(2020·黑龙江道里·哈尔滨三中高二期末(理))设是等差数列,则“”是“数列是递增数列”的( )A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【答案】C【解析】在是等差数列,若,可得,所以数列是递增数列,即充分性成立;若数列是递增数列,则必有,即必要性成立,所以“”是“数列是递增数列”的充分必要条件.故选:C.【一隅三反】1.(2020·全国高二)首项为﹣21的等差数列从第8项起开始为正数,则公差d的取值范围是( )A.d>3 B.d C.3≤d D.3<d【答案】D【解析】an=﹣21+(n﹣1)d.∵从第8项起开始为正数,∴a7=﹣21+6d≤0,a8=﹣21+7d>0,解得3<d.故选:D.2.(2020·北京怀柔·高二期末)已知数列为等差数列,则下面不一定成立的是( )A.若,则 B.若,则C.若,则 D.若,则【答案】D【解析】利用等差数列的单调性可得:若,所以公差,所以等差数列是递增数列,所以,成立,∴A,B正确;则不一定成立,例如时不一定成立,∴D不一定成立;若,则,所以成立,∴C正确.故选:D3.(2020·上海市实验学校高三月考)已知等差数列是递增数列,且,,则的取值范围为___________.【答案】【解析】∵等差数列是递增数列,且,∴又∵,∴,,,,即的取值范围为,故答案为.
相关试卷
这是一份人教A版 (2019)选择性必修 第二册4.2 等差数列课堂检测,共29页。
这是一份人教A版 (2019)选择性必修 第二册第四章 数列4.2 等差数列优秀同步练习题,文件包含421等差数列的概念精练解析版docx、421等差数列的概念精练原卷版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。
这是一份人教A版 (2019)选择性必修 第二册4.2 等差数列同步测试题,文件包含422等差数列的前n项和精讲原卷版docx、422等差数列的前n项和精讲解析版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。