所属成套资源:备注2023年新中考数学二轮专题导练
备注2023年新中考数学二轮专题导练 考点13 几何探究问题
展开
这是一份备注2023年新中考数学二轮专题导练 考点13 几何探究问题,文件包含备注2023年新中考数学二轮专题导练考点13几何探究问题解析版doc、备注2023年新中考数学二轮专题导练考点13几何探究问题原卷版doc等2份试卷配套教学资源,其中试卷共67页, 欢迎下载使用。
考点13 几何探究问题
考点精讲
几何探究题型是中考数学常见的题型,常以压轴题的形式出现,是数学学习中的重点也是难点。
那么遇到这种题型应该怎么去思考呢?
先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对应产生线段、面积等的变化,求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最后根据所求的函数关系进行探索研究,一般有:
在什么条件下图形是等腰三角形、直角三角形、四边形是菱形、梯形等或探索两个三角形满足什么条件相似等或探究线段之间的位置关系等或探索面积之间满足一定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。
求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。
找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相似、面积相等方法。求定义域主要是寻找图形的特殊位置(极限位置)和根据解析式求解。
最后探索的问题千变万化,但少不了对图形的分析和研究,用几何和代数的方法求出x的值。
在解数学综合题时我们要做到:
数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类讨论要严密,方程函数是工具,计算推理要严谨,创新品质得提高。
真题解析
例题
1.(2021·湖北中考真题)问题提出 如图(1),在和中,,,,点在内部,直线与交于点,线段,,之间存在怎样的数量关系?
问题探究 (1)先将问题特殊化.如图(2),当点,重合时,直接写出一个等式,表示,,之间的数量关系;
(2)再探究一般情形.如图(1),当点,不重合时,证明(1)中的结论仍然成立.
问题拓展 如图(3),在和中,,,(是常数),点在内部,直线与交于点,直接写出一个等式,表示线段,,之间的数量关系.
【答案】(1).(2)见解析;问题拓展:.
【分析】
(1)先证明△BCE≌△ACD,得到AF=BE,BF-BE=BF-AF=EF=;
(2)过点作交于点,证明,,是等腰直角三角形即可;利用前面的方法变全等为相似证明即可.
【详解】
问题探究 (1).理由如下:如图(2),
∵∠BCA=∠ECF=90°,
∴∠BCE=∠ACF,
∵BC=AC,EC=CF,
△BCE≌△ACF,
∴BE=AF,
∴BF-BE=BF-AF=EF=;
(2)证明:过点作交于点,则,
∴.
∵,
∴.
又∵,,
∴,
∴.
∴.
∴,,
∴是等腰直角三角形.
∴.
∴.
问题拓展 .理由如下:
∵∠BCA=∠ECD=90°,
∴∠BCE=∠ACD,
∵BC=kAC,EC=kCD,
∴△BCE∽△ACD,
∴∠EBC=∠FAC,
过点作交于点M,则,
∴.
∴△BCM∽△ACF,
∴BM:AF=BC:AC=MC:CF=k,
∴BM=kAF,MC=kCF,
∴BF-BM=MF,MF==
∴BF- kAF =.
【点睛】
本题考查了等腰直角三角形的性质,三角形全等的判定和性质,三角形相似的判定和性质,勾股定理,熟练掌握三角形全等的判定,三角形相似的判定,勾股定理是解题的关键.
2.(2021·浙江中考真题)(证明体验)
(1)如图1,为的角平分线,,点E在上,.求证:平分.
(思考探究)
(2)如图2,在(1)的条件下,F为上一点,连结交于点G.若,,,求的长.
(拓展延伸)
(3)如图3,在四边形中,对角线平分,点E在上,.若,求的长.
【答案】(1)见解析;(2);(3)
【分析】
(1)根据SAS证明,进而即可得到结论;
(2)先证明,得,进而即可求解;
(3)在上取一点F,使得,连结,可得,从而得,可得,,最后证明,即可求解.
【详解】
解:(1)∵平分,
∴,
∵,
∴,
∴,
∴,
∴,即平分;
(2)∵,
∴,
∵,
∴,
∴.
∵,
∴.
∵,
∴;
(3)如图,在上取一点F,使得,连结.
∵平分,
∴
∵,
∴,
∴.
∵,
∴.
∵,
∴,
∴.
∵,
∴.
∵,
又∵,
∴
∴,
∴,
∴.
【点睛】
本题主要考查全等三角形的判定和性质,相似三角形的判定和性质,添加辅助线,构造全等三角形和相似三角形,是解题的关键.
3.(2021·浙江中考真题)已知在中,是的中点,是延长线上的一点,连结.
(1)如图1,若,求的长.
(2)过点作,交延长线于点,如图2所示.若,求证:.
(3)如图3,若,是否存在实数,当时,?若存在,请直接写出的值;若不存在,请说明理由.
【答案】(1);(2)见解析;(3)存在,
【分析】
(1)先解直角三角形ABC得出,从而得出是等边三角形,再解直角三角形ACP即可求出AC的长,进而得出BC的长;
(2)连结,先利用AAS证出,得出AE=2PE,AC=DE,再得出是等边三角形,然后由SAS得出,得出AE=BC即可得出结论;
(3)过点作,交延长线于点,连接BE,过C作CG⊥AB于G,过E作EN⊥AB于N,由(2)得AE=2AP,DE=AC,再证明,从而得出得出DE=BE,然后利用勾股定理即可得出m的值.
【详解】
(1)解 ,
,
,
,
是等边三角形,
是的中点,
,
在中,,
,
.
(2)证明:连结,
,
,
,
,
,
,
,
又,
,
是等边三角形,
,
,
又,
,
,
.
(3)存在这样的.
过点作,交延长线于点,连接BE,过C作CG⊥AB于G,过E作EN⊥AB于N,则,
,
由(2)得AE=2AP,DE=AC,
∴CG=EN,
∵,
∴AE=BC,
∵∠ANE=∠BGC=90°,
,
∴∠EAN=∠CBG
∵AE=BC,AB=BA,
∴
∴AC=BE,
∴DE=BE,
∴∠EDB=∠EBD=45°,
∴∠DEB=90°,
∴,
∵
∴
【点睛】
本题属于三角形综合题,考查了解直角三角形,全等三角形的性质与判定,等边三角形和等腰三角形的性质、勾股定理,解题的关键是合理添加辅助线,有一定的难度.
4.(2021·四川中考真题)在等腰中,,点是边上一点(不与点、重合),连结.
(1)如图1,若,点关于直线的对称点为点,结,,则________;
(2)若,将线段绕点顺时针旋转得到线段,连结.
①在图2中补全图形;
②探究与的数量关系,并证明;
(3)如图3,若,且,试探究、、之间满足的数量关系,并证明.
【答案】(1)30°;(2)①见解析;②;见解析;(3),见解析
【分析】
(1)先根据题意得出△ABC是等边三角形,再利用三角形的外角计算即可
(2)①按要求补全图即可
②先根据已知条件证明△ABC是等边三角形,再证明,即可得出
(3)先证明,再证明,得出,从而证明,得出,从而证明
【详解】
解:(1)∵,
∴△ABC是等边三角形
∴∠B=60°
∵点关于直线的对称点为点
∴AB⊥DE,
∴
故答案为:;
(2)①补全图如图2所示;
②与的数量关系为:;
证明:∵,.
∴为正三角形,
又∵绕点顺时针旋转,
∴,,
∵,,
∴,
∴,
∴.
(3)连接.
∵,,∴.
∴.
又∵,
∴,
∴.∵,∴,
∴,
∴,
∴,.
∵,
∴.
又∵,
∴.
【点睛】
本题考查相似三角形的证明及性质、全等三角形的证明及性质、三角形的外角、轴对称,熟练进行角的转换是解题的关键,相似三角形的证明是重点
5.(2021·江苏中考真题)在数学兴趣小组活动中,小亮进行数学探究活动.
(1)是边长为3的等边三角形,E是边上的一点,且,小亮以为边作等边三角形,如图1,求的长;
(2)是边长为3的等边三角形,E是边上的一个动点,小亮以为边作等边三角形,如图2,在点E从点C到点A的运动过程中,求点F所经过的路径长;
(3)是边长为3的等边三角形,M是高上的一个动点,小亮以为边作等边三角形,如图3,在点M从点C到点D的运动过程中,求点N所经过的路径长;
(4)正方形的边长为3,E是边上的一个动点,在点E从点C到点B的运动过程中,小亮以B为顶点作正方形,其中点F、G都在直线上,如图4,当点E到达点B时,点F、G、H与点B重合.则点H所经过的路径长为______,点G所经过的路径长为______.
【答案】(1)1;(2)3;(3);(4);
【分析】
(1)由、是等边三角形,,, ,可证即可;
(2)连接,、是等边三角形,可证,可得,又点在处时,,点在A处时,点与重合.可得点运动的路径的长;
(3)取中点,连接,由、是等边三角形,可证,可得.又点在处时,,点在处时,点与重合.可求点所经过的路径的长;
(4)连接CG ,AC ,OB,由∠CGA=90°,点G在以AC中点为圆心,AC为直径的上运动,由四边形ABCD为正方形,BC为边长,设OC=x,由勾股定理即,可求,点G所经过的路径长为长=,点H所经过的路径长为的长.
【详解】
解:(1)∵、是等边三角形,
∴,,.
∴,
∴,
∴,
∴;
(2)连接,
∵、是等边三角形,
∴,,.
∴,
∴,
∴,
∴,,
∵,
∴,
∴,
又点在处时,,点在A处时,点与重合.
∴点运动的路径的长;
(3)取中点,连接,
∴,
∴,
∵,
∴,
∴,
∵、是等边三角形,
∴,,
∴,
∴,
∴,
∴,,
∴,
又点在处时,,点在处时,点与重合,
∴点所经过的路径的长;
(4)连接CG ,AC ,OB,
∵∠CGA=90°,
∴点G在以AC中点为圆心,AC为直径的上运动,
∵四边形ABCD为正方形,BC为边长,
∴∠COB=90°,设OC=x,
由勾股定理即,
∴,
点G所经过的路径长为长=,
点H在以BC中点为圆心,BC长为直径的弧上运动,
点H所经过的路径长为的长度,
∵点G运动圆周的四分之一,
∴点H也运动圆周的四分一,
点H所经过的路径长为的长=,
故答案为;.
【点睛
本题考查等边三角形的性质,三角形全等判定与性质,勾股定理,90°圆周角所对弦是直径,圆的弧长公式,掌握等边三角形的性质,三角形全等判定与性质,勾股定理,90°圆周角所对弦是直径,圆的弧长公式是解题关键.
突破提升
一、解答题
1.(2021·山东青岛·中考真题)问题提出:
最长边长为128的整数边三角形有多少个?(整数边三角形是指三边长度都是整数的三角形.)
问题探究:
为了探究规律,我们先从最简单的情形入手,从中找到解决问题的方法,最后得出一般性的结论.
(1)如表①,最长边长为1的整数边三角形,显然,最短边长是1,第三边长也是1.按照(最长边长,最短边长,第三边长)的形式记为,有1个,所以总共有个整数边三角形.
表①
最长边长
最短边长
(最长边长,最短边长,第三边长)
整数边三角形个数
计算方法
算式
1
1
1
1个1
(2)如表②,最长边长为2的整数边三角形,最短边长是1或2.根据三角形任意两边之和大于第三边,当最短边长为1时,第三边长只能是2,记为,有1个;当最短边长为2时,显然第三边长也是2,记为,有1个,所以总共有个整数边三角形.
表②
最长边长
最短边长
(最长边长,最短边长,第三边长)
整数边三角形个数
计算方法
算式
2
1
1
2个1
2
1
(3)下面在表③中总结最长边长为3的整数边三角形个数情况:
表③
最长边长
最短边长
(最长边长,最短边长,第三边长)
整数边三角形个数
计算方法
算式
3
1
1
2个2
2
,
2
3
1
(4)下面在表④中总结最长边长为4的整数边三角形个数情况:
表④
最长边长
最短边长
(最长边长,最短边长,第三边长)
整数边三角形个数
计算方法
算式
4
1
1
3个2
2
,
2
3
,
2
4
1
(5)请在表⑤中总结最长边长为5的整数边三角形个数情况并填空:
表⑤
最长边长
最短边长
(最长边长,最短边长,第三边长)
整数边三角形个数
计算方法
算式
5
1
1
___
___
2
,
2
3
_______
_____
4
,
2
5
1
问题解决:
(1)最长边长为6的整数边三角形有___________个.
(2)在整数边三角形中,设最长边长为,总结上述探究过程,当为奇数或为偶数时,整数边三角形个数的规律一样吗?请写出最长边长为的整数边三角形的个数.
(3)最长边长为128的整数边三角形有__________个.
拓展延伸:
在直三棱柱中,若所有棱长均为整数,则最长棱长为9的直三棱柱有___________个.
2.(2021·甘肃兰州·中考真题)已知正方形,,为平面内两点.
【探究建模】
(1)如图1,当点在边上时,,且,,三点共线.求证:;
【类比应用】
(2)如图2,当点在正方形外部时,,,且,,三点共线.猜想并证明线段,,之间的数量关系;
【拓展迁移】
(3)如图3,当点在正方形外部时,,,,且,,三点共线,与交于点.若,,求的长.
3.(2021·山东日照·中考真题)问题背景:
如图1,在矩形中,,,点是边的中点,过点作交于点.
实验探究:
(1)在一次数学活动中,小王同学将图1中的绕点按逆时针方向旋转,如图2所示,得到结论:①_____;②直线与所夹锐角的度数为______.
(2)小王同学继续将绕点按逆时针方向旋转,旋转至如图3所示位置.请问探究(1)中的结论是否仍然成立?并说明理由.
拓展延伸:
在以上探究中,当旋转至、、三点共线时,则的面积为______.
4.(2021·江苏淮安·中考真题)【知识再现】
学完《全等三角形》一章后,我们知道“斜边和一条直角边分别相等的两个直角三角形全等(简称HL定理)”是判定直角三角形全等的特有方法.
【简单应用】
如图(1),在△ABC中,∠BAC=90°,AB=AC,点D、E分别在边AC、AB上.若CE=BD,则线段AE和线段AD的数量关系是 .
【拓展延伸】
在△ABC中,∠BAC=(90°<<180°),AB=AC=m,点D在边AC上.
(1)若点E在边AB上,且CE=BD,如图(2)所示,则线段AE与线段AD相等吗?如果相等,请给出证明;如果不相等,请说明理由.
(2)若点E在BA的延长线上,且CE=BD.试探究线段AE与线段AD的数量关系(用含有a、m的式子表示),并说明理由.
5.(2021·辽宁锦州·中考真题)在△ABC中,AC=AB,∠BAC=,D为线段AB上的动点,连接DC,将DC绕点D顺时针旋转得到DE,连接CE,BE.
(1)如图1,当=60°时,求证:△CAD≌△CBE;
(2)如图2,当tanα=时,
①探究AD和BE之间的数量关系,并说明理由;
②若AC=5,H是BC上一点,在点D移动过程中,CE+EH是否存在最小值?若存在,请直接写出CE+EH的最小值;若不存在,请说明理由.
6.(2021·湖南湘潭·中考真题)德国著名的天文学家开普勒说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿”.
如图①,点C把线段分成两部分,如果,那么称点C为线段的黄金分割点.
(1)特例感知:在图①中,若,求的长;
(2)知识探究:如图②,作⊙O的内接正五边形:
①作两条相互垂直的直径、;
②作的中点P,以P为圆心,为半径画弧交于点Q;
③以点A为圆心,为半径,在⊙O上连续截取等弧,使弦,连接;
则五边形为正五边形.
在该正五边形作法中,点Q是否为线段的黄金分割点?请说明理由.
(3)拓展应用:国旗和国徽上的五角星是革命和光明的象征,是一个非常优美的几何图形,与黄金分割有着密切的联系.
延长题(2)中的正五边形的每条边,相交可得到五角星,摆正后如图③,点E是线段的黄金分割点,请利用题中的条件,求的值.
7.(2021·辽宁阜新·中考真题)下面是小明关于“对称与旋转的关系”的探究过程,请你补充完整.
(1)三角形在平面直角坐标系中的位置如图1所示,简称G,G关于y轴的对称图形为,关于轴的对称图形为.则将图形绕____点顺时针旋转____度,可以得到图形.
(2)在图2中分别画出G关于 y轴和直线的对称图形,.将图形绕____点(用坐标表示)顺时针旋转______度,可以得到图形.
(3)综上,如图3,直线和所夹锐角为,如果图形G关于直线的对称图形为,关于直线的对称图形为,那么将图形绕____点(用坐标表示)顺时针旋转_____度(用表示),可以得到图形.
8.(2021·贵州遵义·中考真题)在复习菱形的判定方法时,某同学进行了画图探究,其作法和图形如下:
①画线段AB;
②分别以点A,B为圆心,大于AB长的一半为半径作弧,两弧相交于M、N两点,作直线MN交AB于点O;
③在直线MN上取一点C(不与点O重合),连接AC、BC;
④过点A作平行于BC的直线AD,交直线MN于点D,连接BD.
(1)根据以上作法,证明四边形ADBC是菱形;
(2)该同学在图形上继续探究,他以点O为圆心作四边形ADBC的内切圆,构成如图所示的阴影部分,若AB=2,∠BAD=30°,求图中阴影部分的面积.
9.(2021·贵州遵义·中考真题)点A是半径为2的⊙O上一动点,点B是⊙O外一定点,OB=6.连接OA,AB.
(1)【阅读感知】如图①,当△ABC是等边三角形时,连接OC,求OC的最大值;将下列解答过程补充完整.
解:将线段OB绕点B顺时针旋转60°到O′B,连接OO′,CO′.
由旋转的性质知:∠OBO′=60°,BO′=BO=6,即△OBO′是等边三角形.
∴OO′=BO=6
又∵△ABC是等边三角形
∴∠ABC=60°,AB=BC
∴∠OBO′=∠ABC=60°
∴∠OBA=∠O′BC
在△OBA和△O′BC中,
∴ (SAS)
∴OA=O′C
在△OO′C中,OC<OO′+O′C
当O,O′,C三点共线,且点C在OO′的延长线上时,OC=OO′+O′C
即OC≤OO′+O′C
∴当O,O′,C三点共线,且点C在OO′的延长线上时,OC取最大值,最大值是 .
(2)【类比探究】如图②,当四边形ABCD是正方形时,连接OC,求OC的最小值;
(3)【理解运用】如图③,当△ABC是以AB为腰,顶角为120°的等腰三角形时,连接OC,求OC的最小值,并直接写出此时△ABC的周长.
10.(2021·山东枣庄·中考真题)如图1,对角线互相垂直的四边形叫做垂美四边形.
(1)概念理解:如图2,在四边形中,,,问四边形是垂美四边形吗?请说明理由;
(2)性质探究:如图1,垂美四边形的对角线,交于点.猜想:与有什么关系?并证明你的猜想.
(3)解决问题:如图3,分别以的直角边和斜边为边向外作正方形和正方形,连结,,.已知,,求的长.
参考答案:
1.问题探究:见解析;问题解决:(1)12;(2)当为奇数时,整数边三角形个数为;当为偶数时,整数边三角形个数为;(3)4160;拓展延伸:295
【解析】
【分析】
问题探究:
根据(1)(2)(3)(4)的具体推算,总结出相同的规律,按规律填好表格即可;
问题解决:
(1)由最长边长分别为1,2,3,4,5总结出能反应规律的算式,再根据规律直接写出最长边长为6时的三角形的个数;
(2)分两种情况讨论:当为奇数,当为偶数,再从具体到一般进行推导即可;
(3)当最长边长时,为偶数,再代入进行计算,即可得到答案;
拓展延伸:
分两种情况讨论:当9是底边的棱长时,由最长边长为9的三角形个数有:个,当9是侧棱长时,底边三角形的最长边可以为1,2,3,4,5,6,7,8,底边三角形共有:个,从而可得答案.
【详解】
解:问题探究:
最长边长
最短边长
(最长边长,最短边长,第三边长)
整数边三角形个数
计算方法
算式
5
3
,,
3
3个3
问题解决:
(1)最长边长为1的三角形有:个,
最长边长为2的三角形有:个,
最长边长为3的三角形有:个,
最长边长为4的三角形有:个,
最长边长为5的三角形有:个,
所以最长边长为6的三角形有:个,
故答案为:
(2)由(1)得:
最长边长为1的三角形有:个,
最长边长为3的三角形有:个,
最长边长为5的三角形有:个,
所以当为奇数时,整数边三角形个数为;
最长边长为2的三角形有:个,
最长边长为4的三角形有:个,
最长边长为6的三角形有:个,
所以当为偶数时,整数边三角形个数为.
(3)当最长边长时,为偶数,
可得此时的三角形个数为:
故答案为:
拓展延伸:
当9是底边的棱长时,
最长边长为9的三角形个数有:个,
而直三棱柱的高分别为:1,2,3,4,5,6,7,8,9,
所以这样的直三棱柱共有:个,
当9是侧棱长时,底边三角形的最长边可以为1,2,3,4,5,6,7,8,
底边三角形共有:个,
所以这样的直三棱柱共有:个,
综上,满足条件的直三棱柱共有个.
故答案为:
【点睛】
本题考查的是学生的阅读理解能力,探究规律的方法,并运用规律解决问题,同时考查了立体图形的含义,三角形的三边关系,弄懂题意,掌握探究方法,运用规律的能力都是解题的关键.
2.(1)见解析;(2);理由见解析(3)
【解析】
【分析】
(1)根据正方形性质以及题意证明即可得出结论;
(2)根据已知条件证明,然后证明为等腰直角三角形即可得出结论;
(3)先证明,得出为等腰直角三角形,根据勾股定理以及等腰直角三角形的性质求出的长度,即可得出结论.
【详解】
解:(1)∵四边形是正方形,,,三点共线,
∴,
∵,
∴,
∴,
在和中,
,
∴,
∴;
(2)∵,四边形是正方形,
∴,,
∴,
∵,,
∴,
∴,
在和中,
,
∴,
∴,
∴为等腰直角三角形,
∴,
即;
(3)过点D作于点H,连接BD,
∵,
∵,
∴,
∵,
∴,
在和中,
,
∴,
∴,,
∵且,
∴为等腰直角三角形,
∴,
在中,,
∴,
∵是正方对角线,
∴,
∵
∴,
∴为等腰直角三角形,
∴,
∴在中,,
∴.
【点睛】
本题考查了正方形的性质,全等三角形的判定与性质,勾股定理,等腰直角三角形判定与性质,熟知性质定理是解本题的关键.
3.(1),30°;(2)成立,理由见解析;拓展延伸:或
【解析】
【分析】
(1)通过证明,可得,,即可求解;
(2)通过证明,可得,,即可求解;
拓展延伸:分两种情况讨论,先求出,的长,即可求解.
【详解】
解:(1)如图1,,,,
,
如图2,设与交于点,与交于点,
绕点按逆时针方向旋转,
,
,
,,
又,
,
直线与所夹锐角的度数为,
故答案为:,;
(2)结论仍然成立,
理由如下:如图3,设与交于点,与交于点,
将绕点按逆时针方向旋转,
,
又,
,
,,
又,
,
直线与所夹锐角的度数为.
拓展延伸:如图4,当点在的上方时,过点作于,
,,点是边的中点,,
,,,
,,
,
、、三点共线,
,
,
,
,
由(2)可得:,
,
,
的面积;
如图5,当点在的下方时,过点作,交的延长线于,
同理可求:的面积;
故答案为:或.
【点睛】
本题是几何变换综合题,考查了矩形的性质,相似三角形的判定和性质,直角三角形的性质,旋转的性质等知识,利用分类讨论思想解决问题是解题的关键.
4.【简单应用】AE=AD;【拓展延伸】(1)相等,证明见解析;(2)AE﹣AD=2AC•cos(180°﹣),理由见解析
【解析】
【分析】
简单应用:证明Rt△ABD≌Rt△ACE(HL),可得结论.
拓展延伸:(1)结论:AE=AD.如图(2)中,过点C作CM⊥BA交BA的延长线于M,过点N作BN⊥CA交CA的延长线于N.证明△CAM≌△BAN(AAS),推出CM=BN,AM=AN,证明Rt△CME≌Rt△BND(HL),推出EM=DN,可得结论.
(2)如图(3)中,结论:AE﹣AD=2m•cos(180°﹣).在AB上取一点E′,使得BD=CE′,则AD=AE′.过点C作CT⊥AE于T.证明TE=TE′,求出AT,可得结论.
【详解】
简单应用:解:如图(1)中,结论:AE=AD.
理由:∵∠A=∠A=90°,AB=AC,BD=CE,
∴Rt△ABD≌Rt△ACE(HL),
∴AD=AE.
故答案为:AE=AD.
拓展延伸:(1)结论:AE=AD.
理由:如图(2)中,过点C作CM⊥BA交BA的延长线于M,过点N作BN⊥CA交CA的延长线于N.
∵∠M=∠N=90°,∠CAM=∠BAN,CA=BA,
∴△CAM≌△BAN(AAS),
∴CM=BN,AM=AN,
∵∠M=∠N=90°,CE=BD,CM=BN,
∴Rt△CME≌Rt△BND(HL),
∴EM=DN,
∵AM=AN,
∴AE=AD.
(2)如图(3)中,结论:AE﹣AD=2m•cos(180°﹣).
理由:在AB上取一点E′,使得BD=CE′,则AD=AE′.过点C作CT⊥AE于T.
∵CE′=BD,CE=BD,
∴CE=CE′,
∵CT⊥EE′,
∴ET=TE′,
∵AT=AC•cos(180°﹣)=m•cos(180°﹣),
∴AE﹣AD=AE﹣AE′=2AT=2m•cos(180°﹣).
【点睛】
本题主要考查了全等三角形的性质与判定,等腰三角形的性质与判定,解直角三角形等知识,解题的关键在于能够熟练寻找全等三角形解决问题.
5.(1)见解析;(2)①=,理由见解析;②存在,
【解析】
【分析】
(1)首先证明△ACB,△CDE都是等边三角形,再根据SAS证明三角形全等即可.
(2)①结论:=.利用相似三角形的性质解决问题即可.
②如图2中,过点C作CJ⊥BE交BE的延长线于J.作点C关于BE的对称点R,连接BR,ER,过点R作RT⊥BC于T.利用相似三角形的性质求出CJ=,推出点E的运动轨迹是射线BE,利用面积法求出RT,可得结论.
【详解】
(1)证明:如图1中,
∵=60°,AC=AB,
∴△ABC是等边三角形,
∴CA=CB,∠ACB=60°,
∵将DC绕点D顺时针旋转得到DE,
∴DC=DE,∠CDE=60°,
∴△CDE是等边三角形,
∴CD=CE,∠DCE=∠ACB=60°,
∴∠ACD=∠BCE,
∴△CAD≌△CBE(SAS).
(2)解:①结论:=.
如图2中,过点C作CK⊥AB于K.
∵tan∠CAK==,
∴可以假设CK=3k,AK=4k,则AC=AB=5k,BK=AB﹣AK=k,
∴BC==k,
∵∠A=∠CDE,AC=AB,CD=DE,
∴∠ACB=∠ABC=∠DCE=∠DEC,
∴△ACB∽△DCE,
∴=,
∴=,
∵∠ACB=∠DCE,
∴∠ACD=∠BCE,
∴△ACD∽△BCE,
∴===.
②如图2中,过点C作CJ⊥BE交BE的延长线于J.作点C关于BE的对称点R,连接BR,ER,过点R作RT⊥BC于T.
∵AC=5,
由①可知,AK=4,CK=3,BC=,
∵△CAD∽△BCE,CK⊥AD,CJ⊥BE,
∴==(全等三角形对应边上的高的比等于相似比),
∴CJ=,
∴点E的运动轨迹是射线BE,
∵C,R关于BE对称,
∴CR=2CJ=,
∵BJ===,
∵S△CBR=•CR•BJ=•CB•RT,
∴RT==,
∵EC+EH=ER+EH≥RT,
∴EC+EH≥,
∴EC+EH的最小值为.
【点睛】
本题属于三角形综合题,考查了旋转变换,全等三角形的判定和性质,相似三角形的判定和性质,轴对称最短问题等知识,解题的关键是正确寻找相似三角形解决问题,确定点E的运动轨迹是最后一个问题的突破点,属于中考压轴题.
6.(1)61.8;(2)是,理由见解析;(3)
【解析】
【分析】
(1)根据黄金分割的定义求解即可;
(2)设⊙O的半径为a,则OA=ON=OM=a,利用勾股定理求出PA,继而求出OQ,MQ,即可作出判断;
(3)先求出正五边形的每个内角,即可得到∠PEA=∠PAE=,根据已知条件可知cos72°=,再根据点E是线段PD的黄金分割点,即可求解.
【详解】
解:(1)∵,
∴,
即,
解得:AC≈61.8;
(2)Q是线段OM的黄金分割点,理由如下:
设⊙O的半径为a,则OA=ON=OM=a,
∴OP=,
∴,
∴OQ=PQ-OP=,
∴MQ=OM-OQ=,
,
∴Q是线段OM的黄金分割点;
(3)正五边形的每个内角为:,
∴∠PEA=∠PAE=,
∴cos72°=,
∵点E是线段PD的黄金分割点,
∴,
又∵AE=ED,
∴,
∴cos72°=.
【点睛】
本题考查黄金分割、勾股定理、锐角三角函数,解题的关键是读懂题意正确解题.
7.(1)O,180;(2)图见解析,,90;(3),
【解析】
【分析】
(1)根据图形可以直接得到答案;
(2)根据题意画出图形,观察图形,利用图形旋转的性质得到结论;
(3)从(1)(2)问的结论中得到解题的规律,求出两个函数的交点坐标,即可得出答案.
【详解】
解:(1)由图象可得,图形与图形关于原点成中心对称,
则将图形绕O点顺时针旋转180度,可以得到图形;
故答案为:O,180;
(2),如图;
由图形可得,将图形绕点(用坐标表示)顺时针旋转90度,可以得到图形,
故答案为:,90;
(3)∵当G关于y轴的对称图形为,关于轴的对称图形为时,与关于原点(0,0)对称,即图形绕O点顺时针旋转180度,可以得到图形;
当G关于 y轴和直线的对称图形,时,图形绕点(用坐标表示)顺时针旋转90度,可以得到图形,点(0,1)为直线与 y轴的交点,90度角为直线与 y轴夹角的两倍;
又∵直线和的交点为,夹角为,
∴当直线和所夹锐角为,图形G关于直线的对称图形为,关于直线的对称图形为,那么将图形绕点(用坐标表示)顺时针旋转度(用表示),可以得到图形.
故答案为:,.
【点睛】
本题主要考查了图形的对称性与旋转的性质,关键在于根据题意正确的画出图形,得出规律.
8.(1)见解析;(2)
【解析】
【分析】
(1)根据作法可得AC=BC,证明△ADO≌△BCO,根据对角线垂直平分的四边形ADBC是菱形即可证明结论;
(2)结合(1)四边形ADBC是菱形,根据AB=2,∠BAD=30°,先求出圆O的半径,进而可以求图中阴影部分的面积.
【详解】
解:(1)证明:根据作法可知:直线MN是AB的垂直平分线,
∴AC=BC,OA=OB,MN⊥AB,
∵AD∥BC,
∴∠ADO=∠BCO,
在△ADO和△BCO中,
,
∴△ADO≌△BCO(AAS),
∴OD=OC,
∵OA=OB,MN⊥AB,
∴四边形ADBC是菱形;
(2)∵四边形ADBC是菱形,
∴,
∵∠BAD=30°,
设圆O切AD于点H,连接OH,
则OH⊥AD,
∴,
∴S圆O=,
在Rt△AOD中,∠DOA=30°,OA=,
∴,
∴CD=2OD=2,
∴S菱形ADBC=,
∴图中阴影部分的面积=S菱形ADBC-S圆O=.
【点睛】
本题考查了作图-复杂作图,菱形的判定与性质,三角形内切圆与内心,切线的性质,圆的面积计算,解决本题的关键是证明四边形ADBC是菱形.
9.(1),;(2);(3)OC的最小值为或,△ABC的周长为
【解析】
【分析】
(1)根据全等三角形的性质,,从而求得OC的最大值;
(2)将线段OB绕点B顺时针旋转90°到O′B,连接OO′,CO′,按照(1)中的思路,求证,从而求得OC的最小值;
(3)分别以为顶角进行讨论,按照上述方法求证,从而求得OC的最小值,过点作于点,根据勾股定理求得长度,从而求得△ABC的周长.
【详解】
解:(1)根据上下文题意可得:
∴
∴
(2)将线段OB绕点B顺时针旋转90°到O′B,连接OO′,CO′
由旋转的性质知:∠OBO′=90°,BO′=BO=6,为等腰直角三角形
∴
又∵四边形为正方形
∴
∴
在△OBA和△O′BC中,
∴(SAS)
∴
在△OO′C中,
当O,O′,C三点共线,且点C在线段OO′上时,
即
(3)以为顶点,构建等腰三角形,将线段OB绕点B顺时针旋转120°到O′B,连接OO′,CO′,过点作于点,如下图:
由旋转的性质知:∠OBO′=120°,BO′=BO=6,为等腰三角形
在中,,,∴
∴,
∴
由(2)可得
∴
在△OO′C中,
当O,O′,C三点共线,且点C在线段OO′上时,
即
又∵,在线段上
∴
∴
∴
的周长为
以为顶点,构建等腰三角形,将线段OA绕点A顺时针旋转120°到O′A,连接OO′,CO′,如下图:
由旋转的性质得:,,为等腰三角形
∴
由(2)可得
∴
在中,
∴当点在线段上时,最小
∴点与点重合,
的周长为
【点睛】
此题主要考查了旋转、圆、三角形、正方形等有关性质,充分理解题意并熟练掌握有关性质是解题的关键.
10.(1)四边形是垂美四边形,理由见解析;(2),证明见解析;(3).
【解析】
【分析】
(1)连接,先根据线段垂直平分线的判定定理可证直线是线段的垂直平分线,再根据垂美四边形的定义即可得证;
(2)先根据垂美四边形的定义可得,再利用勾股定理解答即可;
(3)设分别交于点,交于点,连接,先证明,得到,再根据角的和差可证,即,从而可得四边形是垂美四边形,然后结合(2)的结论、利用勾股定理进行计算即可得.
【详解】
证明:(1)四边形是垂美四边形,理由如下:
如图,连接,
∵,
∴点在线段的垂直平分线上,
∵,
∴点在线段的垂直平分线上,
∴直线是线段的垂直平分线,即,
∴四边形是垂美四边形;
(2)猜想,证明如下:
∵四边形是垂美四边形,
∴,
∴,
由勾股定理得:,
,
∴;
(3)如图,设分别交于点,交于点,连接,
∵四边形和四边形都是正方形,
∴,
∴,即,
在和中,,
∴,
∴,
又∵,,
∴,
∴,即,
∴四边形是垂美四边形,
由(2)得:,
∵是的斜边,且,,
∴,,
在中,,
在中,,
∴,
解得或(不符题意,舍去),
故的长为.
【点睛】
本题考查了正方形的性质、全等三角形的判定定理与性质、线段垂直平分线的判定、勾股定理等知识点,正确理解垂美四边形的定义、灵活运用勾股定理是解题关键.
相关试卷
这是一份备注2023年新中考数学二轮专题导练 考点14 综合实践问题,文件包含备注2023年新中考数学二轮专题导练考点14综合实践问题解析版doc、备注2023年新中考数学二轮专题导练考点14综合实践问题原卷版doc等2份试卷配套教学资源,其中试卷共59页, 欢迎下载使用。
这是一份备注2023年新中考数学二轮专题导练 考点12 定义问题,文件包含备注2023年新中考数学二轮专题导练考点12定义问题解析版doc、备注2023年新中考数学二轮专题导练考点12定义问题原卷版doc等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。
这是一份备注2023年新中考数学二轮专题导练 考点11 几何最值问题,文件包含备注2023年新中考数学二轮专题导练考点11几何最值问题解析版doc、备注2023年新中考数学二轮专题导练考点11几何最值问题原卷版doc等2份试卷配套教学资源,其中试卷共68页, 欢迎下载使用。