终身会员
搜索
    上传资料 赚现金

    2023新高考数学函数压轴小题专题突破 专题2 奇函数+M模型问题(解析版)

    立即下载
    加入资料篮
    2023新高考数学函数压轴小题专题突破 专题2 奇函数+M模型问题(解析版)第1页
    2023新高考数学函数压轴小题专题突破 专题2 奇函数+M模型问题(解析版)第2页
    2023新高考数学函数压轴小题专题突破 专题2 奇函数+M模型问题(解析版)第3页
    还剩4页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023新高考数学函数压轴小题专题突破 专题2 奇函数+M模型问题(解析版)

    展开

    这是一份2023新高考数学函数压轴小题专题突破 专题2 奇函数+M模型问题(解析版),共7页。


    专题2 奇函数+M模型问题

    1.若对.有,则函数上的最大值和最小值的和为  

    A4 B8 C6 D12

    【解析】解:.有

    ,则,故

    ,则,故

    ,则

    为奇函数,

    ,设

    ,故为奇函数,

    为奇函数,

    故函数上的最大值和最小值的和是8

    故选:

    2.已知函数,函数的最大值、最小值分别为,则  

    A0 B2 C3 D4

    【解析】解:

    ,则

    可知上为奇函数,又上为偶函数,

    上为奇函数,

    上的最大值为

    则最小值为,可得

    故选:

    3.已知,设函数的最大值是,最小值是,则  

    A B C D

    【解析】解:,由复合函数单调性的判断方法,知此函数在上为增函数

    上的奇函数,其最大值加最小值为0

    1

    故选:

    4.已知函数上的最大值和最小值分别为,则  

    A8 B6 C4 D2

    【解析】解:设,因为奇函数,

    所以,所以,所以

    故选:

    5.已知函数是不为0的常数),当时,函数的最大值与最小值的和为  

    A B6 C2 D

    【解析】解:函数

    上是奇函数,且为单调函数,

    所以2

    时,函数的最大值与最小值的和为

    22

    故选:

    6.已知,函数,设函数的最大值是,最小值是,则  

    A B C D

    【解析】解:

    ,则是奇函数,

    的值域为对称区间,设,则

    故选:

    7.已知a,则  

    A B0 C1 D2

    【解析】解:根据题意,,则

    相加可得,则有a

    a,则

    故选:

    8.已知函数,若,则2  

    A4 B3 C2 D8

    【解析】解:根据题意,函数,则

    则有

    ,则2

    故选:

    9.已知函数均为奇函数,在区间上有最大值5,那么上的最小值为  

    A B C D5

    【解析】解:令

    为奇函数.

    时,

    时,

    时,

    故选:

    10.设函数的最大值为,最小值为,则  

    A1 B2 C3 D4

    【解析】解:函数

    ,定义域为

    为奇函数,

    即有的最值为

    故选:

    11.已知,设函数的最大值为,最小值为,那么  

    A2020 B2019 C4040 D4039

    【解析】解:函数

    由于时单调递减函数;

    a

    函数的最大值为

    最小值为a

    那么

    故选:

    12.函数上的最大值与最小值的和为  

    A B2 C4 D6

    【解析】解:函数

    的图象关于点对称,

    上的最大值与最小值的和为:

    故选:

    13.已知函数,若的最大值为,最小值为,则 8 

    【解析】解:由题意可得

    令函数

    定义域为关于原点对称,且

    即函数为奇函数,其最大值和最小值的和为0

    所以函数的最大值和最小值的和

    故答案为:8

    14.已知函数在区间的最大值为,最小值为,若,则 2 

    【解析】解:

    ,定义域关于原点对称,

    所以为奇函数,则上的单调性相同,

    上时,恒成立,

    所以单调递增,

    所以单调递增,且a

    所以上单调递增,

    所以aa

    由题意可得,解得

    故答案为:2

    15.已知函数,则 6 

    【解析】解:函数

    故答案为:6

    16.已知函数,若a,则  

    【解析】解:根据题意,设

    为奇函数,

    则有a

    由于aa

    解可得

    故答案为:

    17.已知函数上的最大值为,最小值为,则 4 

    【解析】解:

    关于中心对称,则上关于中心对称.

    故答案为:4

     

    相关学案

    2023新高考数学函数压轴小题专题突破 专题12 最大值的最小值(解析版):

    这是一份2023新高考数学函数压轴小题专题突破 专题12 最大值的最小值(解析版),共6页。

    2023新高考数学函数压轴小题专题突破 专题8 等高线问题(解析版):

    这是一份2023新高考数学函数压轴小题专题突破 专题8 等高线问题(解析版),共16页。

    2023新高考数学函数压轴小题专题突破 专题7 唯一零点求值问题(解析版):

    这是一份2023新高考数学函数压轴小题专题突破 专题7 唯一零点求值问题(解析版),共12页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2023新高考数学函数压轴小题专题突破 专题2 奇函数+M模型问题(解析版)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map