终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    高中函数图像大全

    立即下载
    加入资料篮
    高中函数图像大全第1页
    高中函数图像大全第2页
    高中函数图像大全第3页
    还剩13页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中函数图像大全

    展开

    高中必考函数大全 指数函数 概念:一般地,函数y=a^xa0,且a1)叫做指数函数,其中x是自变量,函数的定义域是R 注意:指数函数对外形要求严格,前系数要为1,否则不能为指数函数。      指数函数的定义仅是形式定义。指数函数的图像与性质:规律:1. 当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性      2.a1时,底数越大,图像上升的越快,在y轴的右侧,图像越靠近y轴;       0a1时,底数越小,图像下降的越快,在y轴的左侧,图像越靠近y轴。       y轴右边底大图高;在y轴左边底大图低            3.四字口诀:大增小减。即:当a1时,图像在R上是增函数;当0a1时,图像在R上是减函数。       4. 指数函数既不是奇函数也不是偶函数。 比较幂式大小的方法:当底数相同时,则利用指数函数的单调性进行比较;当底数中含有字母时要注意分类讨论;当底数不同,指数也不同时,则需要引入中间量进行比较;对多个数进行比较,可用01作为中间量进行比较  底数的平移:     在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。       f(X)后加上一个数,图像会向上平移;减去一个数,图像会向下平移。      对数函数 1.对数函数的概念由于指数函数y=ax在定义域(-+)上是单调函数,所以它存在反函数,我们把指数函数y=ax(a0a1)的反函数称为对数函数,并记为y=logax(a0a1). 因为指数函数y=ax的定义域为(-+),值域为(0+),所以对数函数y=logax的定义域为(0+),值域为(-+). 2.对数函数的图像与性质对数函数与指数函数互为反函数,因此它们的图像对称于直线y=x. 据此即可以画出对数函数的图像,并推知它的性质. 为了研究对数函数y=logax(a0a1)的性质,我们在同一直角坐标系中作出函数y=log2x,y=log10x,y=log10x,y=logx,y=logx的草图  由草图,再结合指数函数的图像和性质,可以归纳、分析出对数函数y=logax(a0a1)的图像的特征和性质.见下表.     a1a1 (1)x0(2)x=1时,y=0(3)x1时,y00x1时,y0(3)x1时,y00x1时,y0(4)(0+)上是增函数(4)(0+)上是减函数补充性质y1=logax  y2=logbx其中a1b1(0a1  0b1)x1底大图低即若aby1y20x1底大图高即若ab,则y1y2比较对数大小的常用方法有:(1)若底数为同一常数,则可由对数函数的单调性直接进行判断.(2)若底数为同一字母,则按对数函数的单调性对底数进行分类讨论.(3)若底数不同、真数相同,则可用换底公式化为同底再进行比较.(4)若底数、真数都不相同,则常借助10-1等中间量进行比较. 3.指数函数与对数函数对比名称指数函数对数函数一般形式y=ax(a0a1)y=logax(a0a1)定义域(-+)(0+)值域(0+)(-+) a1时,0a1时,a10a1时,单调性a1时,ax是增函数;0a1时,ax是减函数.a1时,logax是增函数;0a1时,logax是减函数.图像y=ax的图像与y=logax的图像关于直线y=x对称.幂函数 幂函数的图像与性质幂函数随着的不同,定义域、值域都会发生变化,可以采取按性质和图像分类记忆的方法.熟练掌握,当的图像和性质,列表如下.从中可以归纳出以下结论:    它们都过点,除原点外,任何幂函数图像与坐标轴都不相交,任何幂函数图像都不过第四象限.    时,幂函数图像过原点且在上是增函数.    时,幂函数图像不过原点且在上是减函数.    任何两个幂函数最多有三个公共点. 奇函数偶函数非奇非偶函数   定义域RRR奇偶性非奇非偶在第象限的增减性在第象限单调递增在第象限单调递增在第象限单调递增在第象限单调递增在第象限单调递减   幂函数R是常数)的图像在第一象限的分布规律是: 所有幂函数R是常数)的图像都过点时函数的图像都过原点 时,的的图像在第一象限是第一象限的平分线(如); 时,的的图像在第一象限是凹型曲线(如时,的的图像在第一象限是凸型曲线(如 时,的的图像不过原点,且在第一象限是下滑曲线(如 时,幂函数有下列性质:1)图象都通过点 2)在第一象限内都是增函数; 3)在第一象限内,时,图象是向下凸的;时,图象是向上凸的;4)在第一象限内,过点后,图象向右上方无限伸展。  时,幂函数有下列性质:1)图象都通过点 2)在第一象限内都是减函数,图象是向下凸的; 3)在第一象限内,图象向上与轴无限地接近;向右无限地与轴无限地接近;4)在第一象限内,过点后,越大,图象下落的速度越快。 无论取任何实数,幂函数的图象必然经过第一象限,并且一定不经过第四象限。  对号函数函数a>0,b>0)叫做对号函数,因其在(0+)的图象似符号“√”而得名,利用对号函数的图象及均值不等式,当x>0时,(当且仅当时取等号),由此可得函数a>0,b>0,xR+)的性质:时,函数a>0,b>0,xR+)有最小值,特别地,当a=b=1时函数有最小值2。函数a>0,b>0)在区间(0)上是减函数,在区间(+)上是增函数。  因为函数a>0,b>0)是奇函数,所以可得函数a>0,b>0,xR-)的性质:时,函数a>0,b>0,xR-)有最大值-,特别地,当a=b=1时函数有最大值-2。函数a>0,b>0)在区间(--)上是增函数,在区间(-0)上是减函奇函数和偶函数 1)如果对于函数f(x)的定义域内的任意一个x值,都有f(x)=(x).那么就称f(x)为奇函数.
    如果对于函数f(x)的定义域内的任意一个x值,都有f(x)=f(x),那么就称f(x)为偶函数.
    说明:(1)由奇函数、偶函数的定义可知,只有当f(x)的定义域是关于原点成对称的若干区间时,才有可能是奇
     (2)判断是不是奇函数或偶函数,不能轻率从事,例如判断f(x) 是不易的.为了便于判断有时可采取如下办法:计算f(x)+f(x),视其结果而说明是否是奇函数.用这个方法判断此函数较为方便:f(x)
     (3)判断函数的奇偶性时,还应注意是否对定义域内的任何x值,
    x0时,显然有f(x)=f(x),但当x=0时,f(x)=f(x)=1f(x)为非奇非偶函数.
     (4)奇函数的图象特征是关于坐标原点为对称的中心对称图形;偶函数的图象特征是关于y轴为对称轴的对称图形.
     (5)函数的单调性与奇偶性综合应用时,尤其要注意由它们的定义出发来进行论证.
     例 如果函数f(x)是奇函数,并且在(0+)上是增函数,试判断在(0)上的增减性.
     解 设x1x2(0),且x1x20
      则有-x1>-x20
      f(x)(0+)上是增函数,
      f(x1)f(x2)
      又f(x)是奇函数,f(x)=f(x)对任意x成立,
      =f(x1)>-f(x2)
      f(x1)f(x2)
      f(x)(0)上也为增函数.
      由此可得出结论:一个奇函数若在(0+)上是增函数,则在(0)上也必是增函数,即奇函数在(0+)上与(0)上的奇偶性相同.
      类似地可以证明,偶函数在(0+)(0)上的奇偶性恰好相反.
    时,f(x)的解析式
      解 x0x0
      又f(x)是奇函数,f(x)=f(x)  偶函数图象对称性的拓广与应用   我们知道,如果对于函数y=f(x)定义域内任意一个x,都有f(-x)=f(x),那么函数y=f(x)就叫做偶函数.偶函数的图象关于y轴对称,反之亦真.由此可拓广如下:   如果存在常数a,b,对于函数y=f(x)定义域内任意一个x,a+x,b-x仍在       (a+b-x,f(x)),而f(a+b-x)=f[a+(b-x)]=f[b-(b-x)]=f(x),对称点P'(a+b-x,          称;          

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map