年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    皖豫2022-2023学年高一数学上学期12月阶段性测试(二)试卷(Word版附解析)

    皖豫2022-2023学年高一数学上学期12月阶段性测试(二)试卷(Word版附解析)第1页
    皖豫2022-2023学年高一数学上学期12月阶段性测试(二)试卷(Word版附解析)第2页
    皖豫2022-2023学年高一数学上学期12月阶段性测试(二)试卷(Word版附解析)第3页
    还剩9页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    皖豫2022-2023学年高一数学上学期12月阶段性测试(二)试卷(Word版附解析)

    展开

    这是一份皖豫2022-2023学年高一数学上学期12月阶段性测试(二)试卷(Word版附解析),共12页。试卷主要包含了已知函数,是的反函数,则,函数的图象大致为,已知函数的值域为,且满足,若在,下列命题是真命题的是,已知,则等内容,欢迎下载使用。
    皖豫名校2022-2023学年(上)高一年级阶段性测试(二)数学考生注意:1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则   A B C D2.若关于x的不等式的解集是,则   A B C D13.若p,则p成立的充分不必要条件可以是(    A  BC D4.已知函数的反函数,则   A10 B8 C5 D25.已知幂函数满足条件,则实数a的取值范围是(    A B C D6.函数的图象大致为(    A BC D7.已知函数的值域为,且满足,若)上的值域为,则的最大值为(    A1 B2 C3 D48.已知函数若方程有三个不等的实根,则实数k的取值范围是(    A  B C D二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列命题是真命题的是(    A.函数是减函数B至少有一个整数x,使得是质数是存在量词命题CD.命题p的否定是10.已知,则(    A.若,则 B.若,则C.若,则 D.若,则11.若函数满足:当时,的值域为,则称为局部的函数,下列函数中是局部的函数的是(    A B C D12.已知函数,则(    A.不等式的解集是BC.存在唯一的x,使得D.函数的图象关于原点对称三、填空题:本题共4小题,每小题5分,共20分.13.已知集合,则________14.已知函数,若,则实数a的取值范围是________15.若函数的最小值为,则实数a的值为________16.若,不等式恒成立,则实数k的取值范围是________四、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)化简下列各式:18.(12分)已知集合A是函数的定义域,)若,求)若,求实数a的取值范围.19.(12分)某地为响应习近平总书记关于生态文明建设的号召,大力开展青山绿水工程.为加强污染治理,某工厂产生的废气需经过过滤后排放,已知在过滤过程中废气中的污染物浓度P(单位:)与过滤时间t(单位:h)之间的函数关系式为为初始浓度,k均为正常数).假设过滤过程中废气的体积不变.)若,求过滤2 h后污染物的浓度与初始浓度的比值是多少;)若排放时污染物的浓度不超过初始浓度的4%,前4 h的过滤过程中污染物已经被过滤掉了80%,求至少还需要过滤多少小时才能排放.20.(12分)已知,且)证明:)证明:21.(12分)已知函数)判断函数的奇偶性并加以证明;)若关于x的不等式有解,求实数t的取值范围.22.(12分)已知二次函数满足,且)求的解析式;)已知,讨论上的最小值;)若当时,不等式恒成立,求实数a的取值范围. 
    皖豫名校20222023学年(上)高一年级阶段性测试(二)数学·答案一、单项选择题:本题共8小题,每小题5分,共40分.1答案  D解析  ,故2答案  A解析  不等式的解集是,可得,则3答案  A解析  ,即,解得,则成立的充分不必要条件可以是4答案  C解析  因为函数,所以,所以5答案  B解析  为幂函数,,则的定义域为,并且在定义域上为增函数.由解得6答案  C解析  由题可知的定义域为,所以为奇函数,排除AD.因为,排除B,故选C7答案  D解析  ,可得,所以.因为的值域为,所以,可得,故.令,解得.所以m最小为n最大为3,则的最大值为48答案  B解析  作出函数的大致图象如图所示.由可得.由图可知,方程有两个不等的实根,由题意可知,方程有且只有一个实根,故,解得二、多项选择题:本题共4小题,每小题5分,共20分.每小题全部选对的得5分,部分选对的得2分,有选错的得0分.9答案  ABD解析  对于A,是减函数,所以A正确;对于B,可将命题改写为:,使得为质数,则命题为存在量词命题,所以B正确;对于C,所以C错误;对于D,命题p的否定是,所以D正确.10答案  BC解析  对于A,若,令,则,故A错误;对于B,显然,则,则,故B正确;对于C,因为,所以,所以,同理可得,即,故C正确;对于D,因为,所以,故,即,故D错误.11答案  BD解析  对于A上是增函数,当时,,故A错误;对于B上单调递增,当时,,故B正确;对于C上单调递减,当时,,故C错误;对于D上单调递增,当时,,故D正确.12答案  BD解析  对于A,不等式,又上单调递减,所以,解得A错误;对于B,由得,,又,所以B正确;对于C,因为,所以,所以不存在,使得C错误;对于D,故是奇函数,其图象关于原点对称,D正确.三、填空题:本题共4小题,每小题5分,共20分.13答案  解析  由题可知14答案  解析  易知函数上单调递增,且,所以15答案  解析  由题可知,解得的最小值为,即,得,即16答案  解析  不等式对任意恒成立,且.当时,不等式恒成立等价于对于任意恒成立.令,则,由对勾函数性质易得在时,单调递增,故,与矛盾,故此时k不存在.当时,不等式恒成立等价于对于任意恒成立,当时,显然成立,当时,不等式等价于对于任意恒成立,令,则,由对勾函数性质易得在时,单调递减,故.综上,四、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.17  )原式················································································3分)··············································································5分))原式················································································7分)··············································································10分)18  )由题可知,即,解得所以··········································································2分),则·········································································4分)所以··········································································6分))当,即时,,符合题意;·······················································8分),即时,有解得································································10分)综上所述,实数a的取值范围为······················································12分)19)过滤2 h后,所以污染物的浓度与初始浓度的比值是················································4分))由题意知,前4 h消除了80%的污染物,又因为所以,所以·····································································7分)设废气中污染物的浓度为初始浓度的4%时所需过滤时间为,即,所以·······································································10分)故至少还需过滤才能排放.···························································12分)20  ················································································3分)当且仅当时取等号,所以···························································6分))由基本不等式可得,当且仅当,即时取等号,········································8分),同理由题可知上述三式等号不能同时成立.··················································10分)即原不等式得证.··································································12分)21  )函数为奇函数. 1分)证明如下:易知的定义域为因为··········································································3分)所以上的奇函数.································································4分)是奇函数且在定义域上单调递增.···············································5分)不等式有解即有解,的奇偶性可知进一步等价于有解,的单调性可知进一步等价于有解,即不等式有解.···································································8分)因为,所以所以的取值范围是································································10分)所以,即所以实数的取值范围是····························································12分)22  )设,因为,所以··············································································1分)因为所以解得·········································································3分)············································································4分),即时,上单调递减,所以··········································································6分),即时,上单调递减,在上单调递增,所以··········································································7分)时,上单调递增,所以综上,当时,;当时,;当时,······················································8分))不等式可化简为因为,所以要使时,恒成立,显然时不可能.······················································10分)时,函数单调递增,解得综上可知,实数的取值范围为·······················································12分)

    相关试卷

    安徽省皖豫联盟2023-2024学年高二上学期期中数学试卷(Word版附解析):

    这是一份安徽省皖豫联盟2023-2024学年高二上学期期中数学试卷(Word版附解析),共18页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。

    河南省皖豫2022-2023学年高二数学上学期阶段性测试(二)试卷(Word版附答案):

    这是一份河南省皖豫2022-2023学年高二数学上学期阶段性测试(二)试卷(Word版附答案),共17页。试卷主要包含了已知抛物线C,已知空间中三点,,,则,已知曲线等内容,欢迎下载使用。

    河南省皖豫2022-2023学年高二数学上学期阶段测试(一)试卷(Word版附解析):

    这是一份河南省皖豫2022-2023学年高二数学上学期阶段测试(一)试卷(Word版附解析),共19页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map