江苏省无锡市江阴市普通高中2022-2023学年高三上学期阶段测试(期末)数学试卷
展开注意事项及说明:本卷考试时间为120分钟,全卷满分为150分.
一、单项选择题:(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.请将答案填写在答题卡相应的位置上.)
1.已知全集U=R,集合A={x|x-1>0},B={x|0<x<2},则(CRA)∩B=( ▲ )
A.{x|0<x≤1} B.{x|x≤2} C.{x|x≤1} D.{x|1≤x<2}
2.已知i为虚数单位,复数z=(2+i3)(1+ai)为纯虚数,则|z|=( ▲ )
A.0 B.eq \f(1,2) C.2 D.5
3.给出下列四个命题,其中正确命题为( ▲ )
A.a>b是3a>3b的充分不必要条件
B.α>β是csα<csβ的必要不充分条件
C.a=0是函数f(x)=x3+ax2(x∈R)为奇函数的充要条件
D.f(2)<f(3)是函数f(x)=eq \r(,x)在[0,+∞)上单调递增的既不充分也不必要条件
4.为了给热爱朗读的师生提供一个安静独立的环境,某学校修建了若干“朗读亭”.如图所示,该朗读亭的外形是一个正六棱柱和正六棱锥的组合体,正六棱柱两条相对侧棱所在的轴截面为正方形,若正六棱锥与六棱柱的高的比值为1:3,则正六棱锥与正六棱柱的侧面积之比为( ▲ )
A.eq \f(\r(,7),8) B.eq \f(\r(,43),24) C.eq \f(1,9) D.eq \f(1,27)
5.函数f(x)=eq \f(3\s(x)-3\s(-x),x\s(2))的图象大致为( ▲ )
A B C D
6.已知一个等比数列的前n项,前2n项,前3n项的和分别为P,Q,R,则下列等式正确的是( ▲ )
A.P+Q=R B.Q2=PR C.(P+Q)-R=Q2 D.P2+Q2=P(Q+R)
7.在平面直角坐标系xOy中,若满足x(x-k)≤y(k-y)的点(x,y)都在以坐标原点为圆心,2为半径的圆及其内部,则实数k的取值范围是( ▲ )
A.-2eq \r(,2)≤k≤2eq \r(,2) B.-eq \r(,2)≤k≤eq \r(,2) C.-2eq \r(,2)≤k≤eq \r(,2) D.[-eq \r(,2),0)∪(0,eq \r(,2)]
8.设a=eq \f(π,6),b=cs1,c=sineq \f(1,3),这三个数的大小关系为( ▲ )
A.a<b<c B.c<b<a C.c<a<b D.a<c<b
二、多项选择题:(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对得5分,部分选对得2分,有选错得0分.请将答案填写在答题卡相应的位置上.)
9.若x>0,y>0,且xy-(x+y)=1,则下列结论正确的是( ▲ )
A.x+y≥2(eq \r(,2)+1) B.xy≥(eq \r(,2)+1)2
C.x+y≤(eq \r(,2)+1)2 D.xy≤2(eq \r(,2)+1)
10.已知一只钟表的时针OA与分针OB长度分别为3和4,设0点为0时刻,△OAB的面积为S,时间t(单位:时),则以下说法中正确的选项是( ▲ )
A.时针OA旋转的角速度为-eq \f(π,6)rad/h
B.分针OB旋转的角速度为2πrad/h
C.一小时内(即t∈[0,1)时),∠AOB为锐角的时长是eq \f(5,11)h
D.一昼夜内(即t∈[0,24)时),S取得最大值为44次
11.甲箱中有5个红球,2个白球和3个黑球,乙箱中有4个红球,3个白球和3个黑球,先从甲箱中随机取出一球放入乙箱,分别以A1,A2和A3表示由甲箱取出的球是红球,白球和黑球的事件;再从乙箱中随机取出一球,以B表示由乙箱取出的球是红球的事件,则下列结论正确的是( ▲ )
A.事件B与事件Ai(i=1,2,3)相互独立 B.P(A1B)=eq \f(8,45)
C.P(B)=eq \f(1,3) D.P(A2|B)=eq \f(6,31)
12.已知P为抛物线C:y2=2px(p>0)上的动点,Q(4,-4)在抛物线C上,过抛物线C的焦点F的直线l与抛物线C交于A,B两点,M(4,-3),N(-1,1),则( ▲ )
A.|PM|+|PF|的最小值为5
B.若线段AB的中点为M.则△NAB的面积为2eq \r(,2)
C.若NA⊥NB,则直线的斜率为2
D.过点E(1,2)作两条直线与抛物线C分别交于点G,H,满足直线GH的斜率为-1,则EF平分∠GEH
三、填空题:(本题共4小题,每小题5分,共20分.请将答案填写在答题卡相应的位置上.)
13.在平面直角坐标系xOy中,直线l:y=2x+10与双曲线EQ \F(x\S(2),a\S(2))-\F(y\S(2),b\S(2))=1的一条渐近线平行,且双曲线的一个焦点在直线l上,则双曲线的方程为 ▲ .
14.(1-2x)5(1+3x)4的展开式中x的升幂排列的第3项为 ▲ .
15.已知函数f(x)=a(x-5)2+6lnx(a∈R),曲线f(x)在点(1,f(1))处的切线与y轴相交于点(0,6),则函数f(x)的极小值为 ▲ .
16.(第一空2分,第二空3分)已知向量m=(1,1),向量n与向量m的夹角为eq \f(3π,4),m·n=-1,则向量n= ▲ ;若向量n与向量q=(1,0)的夹角为eq \f(π,2),向量p=(csx,2cs2(eq \f(π,3)-eq \f(x,2))),其中0<x<a,当|n+p|∈[eq \f(\r(,2),2),eq \f(\r(,5),2))时,实数a的取值范围为 ▲ .
四、解答题:(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.请将答案填写在答题卡相应的位置上.)
17.(本题满分10分)
已知在△ABC中,AD是∠BAC的平分线,且交BC于D.
(1)用正弦定理证明:eq \f(AB,AC)=eq \f(BD,DC);
(2)若∠BAC=120°,AB=2,AC=1,求BD.
▲ ▲ ▲
18.(本题满分12分)
已知等差数列{an}的前n项和为Sn,且S4=4S2,a2n=2an+1(n∈N*).
(1)求数列{an}的通项公式;
(2)若bn=3eq \s(n-1),令cn=anbn,求数列{cn}的前n项和Tn.
▲ ▲ ▲
19.(本题满分12分)
天和核心舱是我国目前研制的最大航天器,同时也是我国空间站的重要组成部分.为了能顺利的完成航天任务,挑选航天员的要求非常严格.经过统计,在挑选航天员的过程中有一项必检的身体指标ξ服从正态分布N(90,100),航天员在此项指标中的要求为ξ≥110.某学校共有2000名学生.为了宣传这一航天盛事,特意在本校举办了航天员的模拟选拔活动.学生首先要进行上述指标的筛查,对于符合要求的学生再进行4个环节选拔,且仅在通过一个环节后,才能进行到下一个环节的选拔.假设学生通过每个环节的概率均为eq \f(1,4),且相互独立.
(1)设学生甲通过筛查后在后续的4个环节中参与的环节数量为X,请计算X的分布列与数学期望;
(2)请估计符合该项指标的学生人数(结果取整数).以该人数为参加航天员选拔活动的名额,请计算最终通过学校选拔的人数Y的期望值.
参考数值:P(μ-σ<X<μ+σ)=0.6827,P(μ-2σ<X<μ+2a)=0.9545,P(μ-3σ<X<μ+3a)=0.9973.
▲ ▲ ▲
20.(本题满分12分)
如图,在四棱锥P-ABCD中,AP⊥DP,AE=1,AP=2,DP=2eq \r(,3),CD=3,AB∥CD,AB⊥平面PAD,点M满足EQ \\ac(\S\UP7(→),AM)=λEQ \\ac(\S\UP7(→),AD)(0<λ<1).
(1)若λ=eq \f(1,4),求证:平面PBM⊥平面PCM;
(2)设平面MPC与平面PCD的夹角为θ,若tanθ=eq \f(\r(,7),6),求λ的值.
(第20题图)
▲ ▲ ▲
21.(本题满分12分)
在平面直角坐标系xOy中,设曲线C1:eq \f(|x|,a)+\f(|y|,b)=1(a>b>0)所围成的封闭图形的面积为4eq \r(,2),曲线C1上的点到原点O的最短距离为eq \f(2\r(,2),3).以曲线C1与坐标轴的交点为顶点的椭圆记为C2.
(1)求椭圆C2的标准方程:
(2)设AB是过椭圆C2中心O的任意弦,l是线段AB的垂直平分线,M是l上的点(与O不重合),若M是l与椭圆C2的交点,求△AMB的面积的取值范围.
▲ ▲ ▲
22.(本题满分12分)
已知函数f(x)=ex-ax.
(1)若f(x)有两个零点,求a的取值范围;
(2)若方程xex=ax+alnx有两个实数根x1,x2,且x1≠x2,证明:x1+x2+ln(x1x2)<2lna.
▲ ▲ ▲
2022-2023学年江苏省无锡市江阴市第一中学高二下学期5月阶段测试数学试题含答案: 这是一份2022-2023学年江苏省无锡市江阴市第一中学高二下学期5月阶段测试数学试题含答案,共18页。试卷主要包含了单选题,多选题,填空题,双空题,解答题等内容,欢迎下载使用。
江苏省江阴市第一中学2022-2023学年高二下学期5月阶段测试数学试卷: 这是一份江苏省江阴市第一中学2022-2023学年高二下学期5月阶段测试数学试卷,共4页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。
江苏省无锡市普通高中2022-2023学年高三上学期期末调研考试数学试卷: 这是一份江苏省无锡市普通高中2022-2023学年高三上学期期末调研考试数学试卷,共21页。