初中数学中考复习 题型10 二次函数的综合应用题(原卷版)
展开备战2020年中考数学十大题型专练卷
题型10 二次函数的综合应用题
一、解答题
1.如图,抛物线与x轴交于A、B两点(A在B的左侧),与y轴交于点N,过A点的直线l:与y轴交于点C,与抛物线的另一个交点为D,已知,P点为抛物线上一动点(不与A、D重合).
(1)求抛物线和直线l的解析式;
(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l于点E,作轴交直线l于点F,求的最大值;
(3)设M为直线l上的点,探究是否存在点M,使得以点N、C,M、P为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.
2.已知二次函数的图象过点,点(与0不重合)是图象上的一点,直线过点且平行于轴.于点,点.
(1)求二次函数的解析式;
(2)求证:点在线段的中垂线上;
(3)设直线交二次函数的图象于另一点,于点,线段的中垂线交于点,求的值;
(4)试判断点与以线段为直径的圆的位置关系.
3.如图,抛物线与轴交于点A(-1,0),点B(-3,0),且OB=OC,
(1)求抛物线的解析式;
(2)点P在抛物线上,且∠POB=∠ACB,求点P的坐标;
(3)抛物线上两点M,N,点M的横坐标为m,点N的横坐标为m+4.点D是抛物线上M,N之间的动点,过点D作y轴的平行线交MN于点E,
①求DE的最大值.
②点D关于点E的对称点为F.当m为何值时,四边形MDNF为矩形?
4.如图,已知直线与抛物线: 相交于和点两点.
⑴求抛物线的函数表达式;
⑵若点是位于直线上方抛物线上的一动点,以为相邻两边作平行四边形,当平行四边形的面积最大时,求此时四边形的面积及点的坐标;
⑶在抛物线的对称轴上是否存在定点,使抛物线上任意一点到点的距离等于到直线的距离,若存在,求出定点的坐标;若不存在,请说明理由.
5.如图,抛物线y=ax2+bx(a>0)过点E(8,0),矩形ABCD的边AB在线段OE上(点A在点B的左侧),点C、D在抛物线上,∠BAD的平分线AM交BC于点M,点N是CD的中点,已知OA=2,且OA:AD=1:3.
(1)求抛物线的解析式;
(2)F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF周长的最小值;
(3)在x轴下方且在抛物线上是否存在点P,使△ODP中OD边上的高为?若存在,求出点P的坐标;若不存在,请说明理由;
(4)矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL平分矩形的面积时,求抛物线平移的距离.
6.如图,在直角坐标系中,直线与轴,轴分别交于点,点,对称轴为的抛物线过两点,且交轴于另一点,连接.
(1)直接写出点,点,点的坐标和抛物线的解析式;
(2)已知点为第一象限内抛物线上一点,当点到直线的距离最大时,求点的坐标;
(3)抛物线上是否存在一点(点除外),使以点,,为顶点的三角形与相似?若存在,求出点的坐标;若不存在,请说明理由.
7.如图,在平面在角坐标系中,抛物线y=x2-2x-3与x轴交与点A,B(点A在点B的左侧)交y轴于点C,点D为抛物线的顶点,对称轴与x轴交于点E.
(1)连结BD,点M是线段BD上一动点(点M不与端点B,D重合),过点M作MN⊥BD交抛物线于点N(点N在对称轴的右侧),过点N作NH⊥x轴,垂足为H,交BD于点F,点P是线段OC上一动点,当MN取得最大值时,求HF+FP+PC的最小值;
(2)在(1)中,当MN取得最大值HF+FP+1/3PC取得小值时,把点P向上平移个单位得到点Q,连结AQ,把△AOQ绕点O瓶时针旋转一定的角度(0°<<360°),得到△AOQ,其中边AQ交坐标轴于点C在旋转过程中,是否存在一点G使得?若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.
8.已知抛物线的对称轴为直线,其图像与轴相交于、两点,与轴交于点
(1)求,的值;
(2)直线与轴交于点.
①如图1,若∥轴,且与线段及抛物线分别相交于点、,点关于直线的对称点为,求四边形面积的最大值;
②如图2,若直线与线段相交于点,当∽时,求直线的表达式.
9.如图,已知抛物线与轴相交于、两点,与轴交于点,且tan.设抛物线的顶点为,对称轴交轴于点.
(1)求抛物线的解析式;
(2)为抛物线的对称轴上一点,为轴上一点,且.
①当点在线段(含端点)上运动时,求的变化范围;
②当取最大值时,求点到线段的距离;
③当取最大值时,将线段向上平移个单位长度,使得线段与抛物线有两个交点,求的取值范围.
10.如图1,已知抛物线过点.
(1)求抛物线的解析式及其顶点C的坐标;
(2)设点D是x轴上一点,当时,求点D的坐标;
(3)如图2.抛物线与y轴交于点E,点P是该抛物线上位于第二象限的点,线段PA交BE于点M,交y轴于点N,和的面积分别为,求的最大值.
11.如图,已知二次函数图象的顶点坐标为,与坐标轴交于B、C、D三点,且B点的坐标为.
(1)求二次函数的解析式;
(2)在二次函数图象位于x轴上方部分有两个动点M、N,且点N在点M的左侧,过M、N作x轴的垂线交x轴于点G、H两点,当四边形MNHG为矩形时,求该矩形周长的最大值;
(3)当矩形MNHG的周长最大时,能否在二次函数图象上找到一点P,使的面积是矩形MNHG面积的?若存在,求出该点的横坐标;若不存在,请说明理由.
12.如图1,在平面直角坐标系中,抛物线与轴交于点、(点在点右侧),点为抛物线的顶点.点在轴的正半轴上,交轴于点,绕点顺时针旋转得到,点恰好旋转到点,连接.
(1)求点、、的坐标;
(2)求证:四边形是平行四边形;
(3)如图2,过顶点作轴于点,点是抛物线上一动点,过点作轴,点为垂足,使得与相似(不含全等).
①求出一个满足以上条件的点的横坐标;
②直接回答这样的点共有几个?
13.如图1,△AOB的三个顶点A、O、B分别落在抛物线F1:的图象上,点A的横坐标为﹣4,点B的纵坐标为﹣2.(点A在点B的左侧)
(1)求点A、B的坐标;
(2)将△AOB绕点O逆时针旋转90°得到△A'OB',抛物线F2:经过A'、B'两点,已知点M为抛物线F2的对称轴上一定点,且点A'恰好在以OM为直径的圆上,连接OM、A'M,求△OA'M的面积;
(3)如图2,延长OB'交抛物线F2于点C,连接A'C,在坐标轴上是否存在点D,使得以A、O、D为顶点的三角形与△OA'C相似.若存在,请求出点D的坐标;若不存在,请说明理由.
14.在平面直角坐标系xOy中,顶点为A的抛物线与x轴交于B、C两点,与y轴交于点D,已知A(1,4),B(3,0).
(1)求抛物线对应的二次函数表达式;
(2)探究:如图1,连接OA,作DE∥OA交BA的延长线于点E,连接OE交AD于点F,M是BE的中点,则OM是否将四边形OBAD分成面积相等的两部分?请说明理由;
(3)应用:如图2,P(m,n)是抛物线在第四象限的图象上的点,且m+n=﹣1,连接PA、PC,在线段PC上确定一点M,使AN平分四边形ADCP的面积,求点N的坐标.提示:若点A、B的坐标分别为(x1,y1)、(x2,y2),则线段AB的中点坐标为(,).
15.如图①,在平面直角坐标系中,已知,四点,动点以每秒个单位长度的速度沿运动(不与点、点重合),设运动时间为(秒).
(1)求经过、、三点的抛物线的解析式;
(2)点在()中的抛物线上,当为的中点时,若,求点的坐标;
(3)当在上运动时,如图②.过点作轴,垂足为,,垂足为.设矩形与重叠部分的面积为,求与的函数关系式,并求出的最大值;
(4)点为轴上一点,直线与直线交于点,与轴交于点.是否存在点,使得为等腰三角形?若存在,直接写出符合条件的所有点的坐标;若不存在,请说明理由.
16.如图,顶点为的抛物线与轴交于,两点,与轴交于点,过点作轴交抛物线于另一点,作轴,垂足为点.双曲线经过点,连接,.
(1)求抛物线的表达式;
(2)点,分别是轴,轴上的两点,当以,,,为顶点的四边形周长最小时,求出点,的坐标;
17.如图,顶点为的抛物线与轴交于,两点,与轴交于点.
(1)求这条抛物线对应的函数表达式;
(2)问在轴上是否存在一点,使得为直角三角形?若存在,求出点的坐标;若不存在,说明理由.
(3)若在第一象限的抛物线下方有一动点,满足,过作轴于点,设的内心为,试求的最小值.
18.如图,在平面直角坐标系xOy中,抛物线L1:过点C(0,﹣3),与抛物线L2:的一个交点为A,且点A的横坐标为2,点P、Q分别是抛物线L1、抛物线L2上的动点.
(1)求抛物线L1对应的函数表达式;
(2)若以点A、C、P、Q为顶点的四边形恰为平行四边形,求出点P的坐标;
(3)设点R为抛物线L1上另一个动点,且CA平分∠PCR,若OQ∥PR,求出点Q的坐标.
19.如图,抛物线交轴于、两点,其中点坐标为,与轴交于点.
(1)求抛物线的函数表达式;
(2)如图①,连接,点在抛物线上,且满足.求点的坐标;
(3)如图②,点为轴下方抛物线上任意一点,点是抛物线对称轴与轴的交点,直线、分别交抛物线的对称轴于点、.请问是否为定值?如果是,请求出这个定值;如果不是,请说明理由.
20.如图,抛物线的对称轴为直线x=2,抛物线与x轴交于点A和点B,与y轴交于点C,且点A的坐标为(-1,0).
(1)求抛物线的函数表达式;
(2)将抛物线图象x轴下方部分沿x轴向上翻折,保留抛物线在x轴上的点和x轴上方图象,得到的新图象与直线y=t恒有四个交点,从左到右四个交点依次记为D,E,F,G.当以EF为直径的圆过点Q(2,1)时,求t的值;
(3)在抛物线上,当m≤x≤n时,y的取值范围是m≤y≤7,请直接写出x的取值范围.
21.如图①,抛物线与轴交于点,与轴交于点,将直线绕点逆时针旋转90°,所得直线与轴交于点.
(1)求直线的函数解析式;
(2)如图②,若点是直线上方抛物线上的一个动点
①当点到直线的距离最大时,求点的坐标和最大距离;
②当点到直线的距离为时,求的值.
22.如图①,抛物线与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C,已知的面积为6.
(1)求的值;
(2)求外接圆圆心的坐标;
(3)如图②,P是抛物线上一点,点Q为射线CA上一点,且P、Q两点均在第三象限内,Q、A是位于直线BP同侧的不同两点,若点P到x轴的距离为d,的面积为,且,求点Q的坐标.
23.如图,抛物线与x轴交于点,点,与y轴交于点C,且过点.点P、Q是抛物线上的动点.
(1)求抛物线的解析式;
(2)当点P在直线OD下方时,求面积的最大值.
(3)直线OQ与线段BC相交于点E,当与相似时,求点Q的坐标.
24.如图,抛物线交x轴于A,B两点,交y轴于点C.直线经过点A,C.
(1)求抛物线的解析式;
(2)点P是抛物线上一动点,过点P作x轴的垂线,交直线AC于点M,设点P的横坐标为m.
①当是直角三角形时,求点P的坐标;
②作点B关于点C的对称点,则平面内存在直线l,使点M,B,到该直线的距离都相等.当点P在y轴右侧的抛物线上,且与点B不重合时,请直接写出直线的解析式.(k,b可用含m的式子表示)
25.如图,抛物线交轴于两点,与轴交于点,连接.点是第一象限内抛物线上的一个动点,点的横坐标为.
(1)求此抛物线的表达式;
(2)过点作轴,垂足为点,交于点.试探究点P在运动过程中,是否存在这样的点,使得以为顶点的三角形是等腰三角形.若存在,请求出此时点的坐标,若不存在,请说明理由;
(3)过点作,垂足为点.请用含的代数式表示线段的长,并求出当为何值时有最大值,最大值是多少?
26.如图,在平面直角坐标系中,的边在轴上,,以为顶点的抛物线经过点,交y轴于点,动点在对称轴上.
(1)求抛物线解析式;
(2)若点从点出发,沿方向以1个单位/秒的速度匀速运动到点停止,设运动时间为秒,过点作交于点,过点平行于轴的直线交抛物线于点,连接,当为何值时,的面积最大?最大值是多少?
(3)若点是平面内的任意一点,在轴上方是否存在点,使得以点为顶点的四边形是菱形,若存在,请直接写出符合条件的点坐标;若不存在,请说明理由.
27.如图1,在平面直角坐标系中,已知抛物线与轴相交于、两点(点在点的左侧),与轴交于点.
(1)点的坐标为__________,点的坐标为__________,线段的长为__________,抛物线的解析式为__________.
(2)点是线段下方抛物线上的一个动点.
①如果在轴上存在点,使得以点、、、为顶点的四边形是平行四边形.求点的坐标.
②如图2,过点作交线段于点,过点作直线交于点,交轴于点,记,求关于的函数解析式;当取和时,试比较的对应函数值和的大小.
28.已知抛物线经过点和 ,与轴交于另一点,顶点为.
(1)求抛物线的解析式,并写出点的坐标;
(2)如图,点分别在线段上(点不与重合),且,则能否为等腰三角形?若能,求出的长;若不能,请说明理由;
(3)若点在抛物线上,且,试确定满足条件的点的个数.
29.如图,抛物线(a为常数,a>0)与x轴交于O,A两点,点B为抛物线的顶点,点D的坐标为(t,0)(﹣3<t<0),连接BD并延长与过O,A,B三点的⊙P相交于点C.
(1)求点A的坐标;
(2)过点C作⊙P的切线CE交x轴于点E.①如图1,求证:CE=DE;②如图2,连接AC,BE,BO,当,∠CAE=∠OBE时,求的值
30.如图,直线交轴于点,交轴于点,点的坐标为,抛物线经过三点,抛物线的顶点为点,对称轴与轴的交点为点,点关于原点的对称点为,连接,以点为圆心,的长为半径作圆,点为直线上的一个动点.
(1)求抛物线的解析式;
(2)求周长的最小值;
(3)若动点与点不重合,点为⊙上的任意一点,当的最大值等于时,过两点的直线与抛物线交于两点(点在点的左侧),求四边形的面积.
初中数学中考复习 专题11 二次函数综合(原卷版): 这是一份初中数学中考复习 专题11 二次函数综合(原卷版),共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中数学中考复习 专题10 圆的综合运用(原卷版): 这是一份初中数学中考复习 专题10 圆的综合运用(原卷版),共14页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
初中数学中考复习 题型10 二次函数的综合应用题(解析版): 这是一份初中数学中考复习 题型10 二次函数的综合应用题(解析版),共83页。试卷主要包含了解答题等内容,欢迎下载使用。