所属成套资源:【聚焦中考】2023年春数学新中考二轮复习热点透析
2023 数学新中考二轮复习热点透析 核心考点06三角形
展开这是一份2023 数学新中考二轮复习热点透析 核心考点06三角形,文件包含2023数学新中考二轮复习热点透析核心考点06三角形解析版docx、2023数学新中考二轮复习热点透析核心考点06三角形原卷版docx等2份试卷配套教学资源,其中试卷共139页, 欢迎下载使用。
核心考点06 三角形
考向分析
1.从考查的题型来看,涉及本知识点的主要以填空题或选择题形式考查,属于中低档题,难度一般.少数以解答题的形式考查(以三角形或四边形为背景),此类题型属于中高档题,难度比较大
2.从考查内容来看,涉及本知识点的主要有:涉及本知识点的主要有:三角形的中线、角平分线、高线;三角形的内(外)角和定理及其三边关系定理;勾股定理及逆定理;等腰(边)三角形的性质及判定;全等三角形的判定方法
3.从考查热点来看,涉及本知识点的主要有:三角形的内(外)角和定理及其三边关系定理;勾股定理及逆定理;等腰(边)三角形的性质及判定;全等三角形的判定方法;角平分线的性质;
考点详解
一.三角形有关概念
1、三角形中的主要线段
(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。
(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。
(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
2.三角形的中位线
三角形的中位线平行于三角形的第三边,并且等于第三边长的一半.
3.三角形的三边关系定理及推论
三角形三边关系:任意两边之和大于第三边;任意两边之差小于第三边.
4、三角形的内角和定理及推论
1.三角形内角和:三角形三内角之和等于180°.
2.三角形外角的性质:(1)三角形的一个外角大于任何一个和它不相邻的内角;
(2)三角形的一个外角等于与它不相邻的两内角之和.
5.三角形的分类:
(1)按边分:三角形分为不等边三角形和等腰三角形;等腰三角形又分为底和腰不等的三角形及等边三角形.
(2)按角分:三角形直角三角形和斜三角形;斜三角形又分为:锐角三角形和钝角三角形.
二.等腰三角形
1、等腰三角形的性质
(1)等腰三角形的性质定理及推论:
定理:等腰三角形的两个底角相等(简称:等边对等角)
推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。
推论2:等边三角形的各个角都相等,并且每个角都等于60°。
(2)等腰三角形的其他性质:
①等腰直角三角形的两个底角相等且等于45°
②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。
③等腰三角形的三边关系:设腰长为a,底边长为b,则 ④等腰三角形的三角关系:设顶角为顶角为∠A,底角为∠B、∠C,则∠A=180°—2∠B,∠B=∠C=
2、等腰三角形的判定
等腰三角形的判定定理及推论:
定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边)。这个判定定理常用于证明同一个三角形中的边相等。
推论1:三个角都相等的三角形是等边三角形
推论2:有一个角是60°的等腰三角形是等边三角形。
推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
等腰三角形的性质与判定
等腰三角形性质
等腰三角形判定
中线
1、等腰三角形底边上的中线垂直底边,平分顶角;
2、等腰三角形两腰上的中线相等,并且它们的交点与底边两端点距离相等。
1、两边上中线相等的三角形是等腰三角形;
2、如果一个三角形的一边中线垂直这条边(平分这个边的对角),那么这个三角形是等腰三角形
角平分线
1、等腰三角形顶角平分线垂直平分底边;
2、等腰三角形两底角平分线相等,并且它们的交点到底边两端点的距离相等。
1、如果三角形的顶角平分线垂直于这个角的对边(平分对边),那么这个三角形是等腰三角形;
2、三角形中两个角的平分线相等,那么这个三角形是等腰三角形。
高线
1、等腰三角形底边上的高平分顶角、平分底边;
2、等腰三角形两腰上的高相等,并且它们的交点和底边两端点距离相等。
1、如果一个三角形一边上的高平分这条边(平分这条边的对角),那么这个三角形是等腰三角形;
2、有两条高相等的三角形是等腰三角形。
角
等边对等角
等角对等边
边
底的一半<腰长<周长的一半
两边相等的三角形是等腰三角形
三.直角三角形
直角三角形的性质
1、直角三角形的两个锐角互余
可表示如下:∠C=90°∠A+∠B=90°
2、在直角三角形中,30°角所对的直角边等于斜边的一半。
∠A=30°
可表示如下: BC=AB
∠C=90°
3、直角三角形斜边上的中线等于斜边的一半
∠ACB=90°
可表示如下: CD=AB=BD=AD
D为AB的中点
4、勾股定理
直角三角形两直角边a,b的平方和等于斜边c的平方,即
直角三角形的判定
1、有一个角是直角的三角形是直角三角形。
2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、勾股定理的逆定理
如果三角形的三边长a,b,c有关系,那么这个三角形是直角三角形。
四. 全等三角形
(1)全等三角形的性质
全等三角形的对应边相等,对应角相等
方法归纳:利用全等三角形的性质解决有关线段相等和角的计算的有关问题
利用全等三角形的性质时,关键是找准对应点,利用对应点得到相应的对应边以及对应角.
(2)三角形全等的判定定理:
方法归纳:证明三角形全等的方法有:SSS,SAS,ASA,AAS,还有直角三角形的HL定理.
(3)角平分线
角平分线上的点到角的两边的距离相等,到角两边距离相等的点在角平分线上.
方法归纳:角平分线的性质是证明线段相等的重要工具,角平分线的性质经常用来解决点到直线的距离以及三角形的面积问题.注意区分角平分线的性质与判定,角平分线的性质和判定都是由三角形全等得到的.
五.尺规作图
(1)尺规作图的步骤
①已知:当作图是文字语言叙述时,要学会根据文字语言用数学语言写出题目中的条件;
②求作:能根据题目写出要求作出的图形及此图形应满足的条件;
③作法:能根据作图的过程写出每一步的操作过程.当不要求写作法时,一般要保留作图痕迹.对于较复杂的作图,可先画出草图,使它同所要作的图大致相同,然后借助草图寻找作法.
(2)与圆有关的尺规作图
①过不在同一直线上的三点作圆(即三角形的外接圆);②作三角形的内切圆;
③作圆的内接正方形和正六边形.
真题再现
一、单选题
1.(2021·山东泰安·中考真题)如图,在平行四边形中,E是的中点,则下列四个结论:①;②若,,则;③若,则;④若,则与全等.其中正确结论的个数为( )
A.1个 B.2个 C.3个 D.4个
【答案】D
【分析】
依次分析各选项,进行推理论证即可;其中①可通过证明,进一步转换后可以得到结论,②可先得到该平行四边形是矩形,利用矩形的性质等得到MN垂直平分BC,即可完成求证,③可以先证明两个三角形的共线边上的高的关系,再利用三角形面积公式即可完成证明,④可以先证明后可进一步证明,即可完成求证.
【详解】
解:∵平行四边形中,E是的中点,
∴,,,
∴,,
∴,
∴,
∴,
故①正确;
若,
则平行四边形是矩形,
由矩形的对角线相等,而点E是矩形的对角线的交点可知,
E点到B、C两点的距离相等,
∴E点在BC的垂直平分线上,
由,可得BN=CN,
所以N点是BC的中点,
∴MN垂直平分BC,
∴,
故②正确;
若,则BN=2CN,
如图1,分别过D、E两点向BC作垂线,垂足分别为Q点和P点,
∵E点是BD中点,
∴DQ=2EP,
∵,
∴,
故③正确;
若,
因为,
所以,
分别过N、C两点向AD作垂线,垂足分别为H、K,
由平行线间的距离处处相等可知:NH=CK,
∴,
∴,
∴,
∴,
又∵,
∴,
故④正确;
故选:D.
2.(2021·四川内江·中考真题)如图,是的外接圆,,若的半径为2,则弦的长为( )
A.4 B. C.3 D.
【答案】B
【分析】
过点作,交于点,根据圆周角定理以及垂径定理可得结果.
【详解】
解:过点作,交于点,
是的外接圆,,
,
又,,
,,
在中,,
,,
,
故选:.
3.(2021·四川内江·中考真题)如图,,,,则的度数为( )
A. B. C. D.
【答案】C
【分析】
根据平行线的性质以及三角形外角的性质可得结果.
【详解】
解:如图,
,,,
,
,
.
故选:.
4.(2021·四川绵阳·中考真题)如图,在平面直角坐标系中,,,,,将四边形向左平移个单位后,点恰好和原点重合,则的值是( )
A.11.4 B.11.6 C.12.4 D.12.6
【答案】A
【分析】
由题意可得,的值就是线段的长度,过点作,过点作,根据勾股定理求得的长度,再根据三角形相似求得,矩形的性质得到,即可求解.
【详解】
解:由题意可得,的值就是线段的长度,
过点作,过点作,如下图:
∵,
∴,
由勾股定理得
∵
∴,
又∵
∴
∴
∴,即
解得,
∵
∴
∴
∴,即
解得
由题意可知四边形为矩形,∴
故选A
5.(2021·四川绵阳·中考真题)如图,在等腰直角中,,、分别为、上的点,,为上的点,且,,则( )
A. B. C. D.
【答案】A
【分析】
作辅助线,构建矩形,得P是MN的中点,则MP=NP=CP,根据等腰三角形的性质和三角形外角的性质可解答.
【详解】
解:如图,过点M作MG⊥BC于M,过点N作NG⊥AC于N,连接CG交MN于H,
∴∠GMC=∠ACB=∠CNG=90°,
∴四边形CMGN是矩形,
∴CH=CG=MN,
∵PC=MN,
存在两种情况:
如图,CP=CP1=MN,
①P是MN中点时,
∴MP=NP=CP,
∴∠CNM=∠PCN=50°,∠PMN=∠PCM=90°−50°=40°,
∴∠CPM=180°−40°−40°=100°,
∵△ABC是等腰直角三角形,
∴∠ABC=45°,
∵∠CPB=117°,
∴∠BPM=117°−100°=17°,
∵∠PMC=∠PBM+∠BPM,
∴∠PBM=40°−17°=23°,
∴∠ABP=45°−23°=22°.
②CP1=MN,
∴CP=CP1,
∴∠CPP1=∠CP1P=80°,
∵∠BP1C=117°,
∴∠BP1M=117°−80°=37°,
∴∠MBP1=40°−37°=3°,
而图中∠MBP1>∠MBP,所以此种情况不符合题意.
故选:A.
6.(2021·四川绵阳·中考真题)如图,在中,,,,且,若,点是线段上的动点,则的最小值是( )
A. B. C. D.
【答案】A
【分析】
根据相似三角形的性质得到,得到,,过B作于H,根据等腰三角形的性质得到,根据勾股定理得到,当时,PQ的值最小,根据相似三角形的性质即可得到结论.
【详解】
解:,
,
,
解得:(负值舍去),
,
,
,
,
,
,
,
过B作于H,
,
,
,
,
当时,PQ的值最小,
,
,
,
,
故选:A.
7.(2021·四川巴中·中考真题)如图,矩形AOBC的顶点A、B在坐标轴上,点C的坐标是(﹣10,8),点D在AC上,将BCD沿BD翻折,点C恰好落在OA边上点E处,则tan∠DBE等于( )
A. B. C. D.
【答案】D
【分析】
先根据四边形ABCD是矩形,C(-10,8),得出BC=AO=10,AC=OB=8,∠A=∠O=∠C=90°,再由折叠的性质得到CD=DE,BC=BE=10,∠DEB=∠C=90°,利用勾股定理先求出OE的长,即可得到AE,再利用勾股定理求出DE,利用求解即可.
【详解】
解:∵四边形ABCD是矩形,C(-10,8),
∴BC=AO=10,AC=OB=8,∠A=∠O=∠C=90°,
由折叠的性质可知:CD=DE,BC=BE=10,∠DEB=∠C=90°,
在直角三角形BEO中:,
∴,
设,则
在直角三角形ADE中:,
∴,
解得,
∴,
∵∠DEB=90°,
∴,
故选D.
8.(2021·广西河池·中考真题)如图,在边长为4的正方形ABCD中,点E,F分别在CD,AC上,,,则AF的长是( )
A. B. C. D.
【答案】B
【分析】
过作的垂线分别交于,由,证明,设,根据,求得,在中,利用勾股定理即可求得.
【详解】
如图,过作的垂线分别交于,
四边形是正方形,
,
,
四边形是矩形,
,,
,
,
,
,
四边形是正方形,
,
,
,
在和中,
(AAS),
,
设,则,
,
即,
解得,
,
四边形是正方形,,
,
,
.
故选B
9.(2021·山东滨州·中考真题)在锐角中,分别以AB和AC为斜边向的外侧作等腰和等腰,点D、E、F分别为边AB、AC、BC的中点,连接MD、MF、FE、FN.根据题意小明同学画出草图(如图所示),并得出下列结论:①,②,③,④,其中结论正确的个数为( )
A.4 B.3 C.2 D.1
【答案】B
【分析】
根据直角三角形斜边中线等于斜边的一半和三角形中位线定理判断结论①,连接DF,EN,通过SAS定理证明△MDF≌△FEN判断结论②,利用全等三角形的性质结合平行四边形的判定和性质判断结论③,利用相似三角形的判定和性质判定结论④.
【详解】
解:∵D、E、F分别为边AB、AC、BC的中点,且△ABM是等腰直角三角形,
∴DM=AB,EF=AB,EF∥AB,∠MDB=90°,
∴DM=EF,∠FEC=∠BAC,故结论①正确;
连接DF,EN,
∵D、E、F分别为边AB、AC、BC的中点,且△ACN是等腰直角三角形,
∴EN=AC,DF=AC,DF∥AC,∠NEC=90°,
∴EN=DF,∠BDF=∠BAC,∠BDF=∠FEC,
∴∠BDF+∠MDB=∠FEC+∠NEC,
∴∠MDF=∠FEN,
在△MDF和△FEN中,
,
∴△MDF≌△FEN(SAS),
∴∠DMF=∠EFN,故结论②正确;
∵EF∥AB,DF∥AC,
∴四边形ADFE是平行四边形,
∴∠DFE=∠BAC,
又∵△MDF≌△FEN,
∴∠DFM=∠ENF,
∴∠EFN+∠DFM
=∠EFN+∠ENF
=180°-∠FEN
=180°-(∠FEC+∠NEC)
=180°-(∠BAC+90°)
=90°-∠BAC,
∴∠MFN=∠DFE+∠EFN+∠DFM=∠BAC+90°-∠BAC=90°,
∴MF⊥FN,故结论③正确;
∵EF∥AB,
∴△CEF∽△CAB,
∴,
∴,
∴S△CEF=S四边形ABFE,故结论④错误,
∴正确的结论为①②③,共3个,
故选:B.
10.(2021·山东滨州·中考真题)在中,若,,,则点C到直线AB的距离为( )
A.3 B.4 C.5 D.2.4
【答案】D
【分析】
根据题意画出图形,然后作CD⊥AB于点D,根据勾股定理可以求得AB的长,然后根据面积法,可以求得CD的长.
【详解】
解:作CD⊥AB于点D,如右图所示,
∵∠ACB=90°,AC=3,BC=4,
∴AB==5,
∵,
∴,
解得CD=2.4,
故选:D.
11.(2021·江苏淮安·中考真题)如图,在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,连接AE,若AE=4,EC=2,则BC的长是( )
A.2 B.4 C.6 D.8
【答案】C
【分析】
根据线段的垂直平分线的性质得到EB=EA=4,结合图形计算,得到答案.
【详解】
解:∵DE是AB的垂直平分线,AE=4,
∴EB=EA=4,
∴BC=EB+EC=4+2=6,
故选:C.
12.(2021·广西百色·中考真题)如图,在⊙O中,尺规作图的部分作法如下:(1)分别以弦AB的端点A、B为圆心,适当等长为半径画弧,使两弧相交于点M;(2)作直线OM交AB于点N.若OB=10,AB=16,则tan∠B等于( )
A. B. C. D.
【答案】B
【分析】
根据尺规作图的作法,可得 垂直平分 ,在 中,利用勾股定理求出ON,即可解答.
【详解】
解:根据尺规作图的作法,得: 垂直平分 ,
即 ,
∵AB=16,
∴,
在 中, ,
∴ ,
∴
故选:B
13.(2021·内蒙古呼和浩特·中考真题)如图,正方形的边长为4,剪去四个角后成为一个正八边形,则可求出此正八边形的外接圆直径d,根据我国魏晋时期数学家刘的“割圆术”思想,如果用此正八边形的周长近似代替其外接圆周长,便可估计的值,下面d及的值都正确的是( )
A., B.,
C., D.,
【答案】C
【分析】
根据勾股定理求出多边形的边长,利用多边形内角和求解内角度数,再根据锐角三角函数求值即可.
【详解】
解: 设剪去△ABC边长AC=BC=x,可得:
,
解得x=,
则BD=,
∵正方形剪去四个角后成为一个正八边形,根据正八边形每个内角为135度,
,
则∠BFD=22.5°,
∴外接圆直径d=BF=,
根据题意知周长÷d==,
故选:C.
14.(2021·江苏泰州·中考真题)如图,P为AB上任意一点,分别以AP、PB为边在AB同侧作正方形APCD、正方形PBEF,设,则 为( )
A.2α B.90°﹣α C.45°+α D.90°﹣α
【答案】B
【分析】
根据题意可得 ,从而 即可.
【详解】
∵四边形APCD和四边形PBEF是正方形,
∴AP=CP,PF=PB,,
∴,
∴∠AFP=∠CBP,
又∵ ,
∴,
故选:B.
15.(2021·河南·中考真题)如图1,矩形中,点为的中点,点沿从点运动到点,设,两点间的距离为,,图2是点运动时随变化的关系图象,则的长为( )
A. B. C. D.
【答案】C
【分析】
先利用图2得出当P点位于B点时和当P点位于E点时的情况,得到AB和BE之间的关系以及,再利用勾股定理求解即可得到BE的值,最后利用中点定义得到BC的值.
【详解】
解:由图2可知,当P点位于B点时,,即,
当P点位于E点时,,即,则,
∵,
∴,
即,
∵
∴,
∵点为的中点,
∴,
故选:C.
二、填空题
16.(2021·辽宁鞍山·中考真题)如图,在正方形ABCD中,对角线AC,BD相交于点O,F是线段OD上的动点(点F不与点O,D重合),连接CF,过点F作分别交AC,AB于点H,G,连接CG交BD于点M,作交CG于点E,EF交AC于点N.有下列结论:①当时,;②;③当时,;④.其中正确的是_______(填序号即可).
【答案】①③④
【分析】
①正确.利用面积法证明即可.
②错误.假设成立,推出,显然不符合条件.
③正确.如图2中,过点M作于P,于Q,连接AF.想办法证明,再利用相似三角形的性质,解决问题即可.
④正确.如图3中,将绕点C顺时针旋转得到,连接FW.则,,,,证明,利用勾股定理,即可解决问题.
【详解】
解:如图1中,过点G作于T.
,
,
,,
四边形ABCD是正方形,
,,
,
,,
,
,
,故①正确,
假设成立,
,
,
,显然这个条件不成立,故②错误,
如图2中,过点M作于P,于Q,连接AF.
,,
,
,,,
,
,,
,
,
,
,
,
,
,
,
,
,
,,
,
,
,,,
,
,
,,
,
,
,,
,
是等腰直角三角形,
,
,
,
,
,
,故③正确,
如图3中,将绕点C顺时针旋转得到,连接FW.则,,,,
∵FG=FC,∠GFO=∠FCN,∠FGM=∠CFN=45°,
∴△FGM≌△CFN,
∴FM=CN,
,,,
,
,
,
,
,故④正确,
故答案为:①③④.
17.(2021·江西·中考真题)如图,在边长为的正六边形中,连接,,其中点,分别为和上的动点,若以,,为顶点的三角形是等边三角形,且边长为整数,则该等边三角形的边长为______.
【答案】9或10或18
【分析】
根据点,分别为和上的动点,以,,为顶点的三角形是等边三角形,先在脑海中生成运动的动态图,通过从满足条件的特殊的情况入手,然后再适当左右摆动图形,寻找其它可能存在的解.
【详解】
解:如下图:
(1)当M,N分别与B,F重合时,在中,由题意得:
,
易算得:,根据正多边形的性质得,
,
为等边三角形,即为等边三角形,边长为18,
此时已为最大张角,故在左上区域不存在其它解;
(2)当M,N分别与DF,DB的中点重合时,由(1)且根据三角形的中位线
得:,
,
为等边三角形,边长为9,
(3)在(2)的条件下,阴影部分等边三角形会适当的左右摆动,使得存在无数个这样的等边三角形且边长会在到之间,其中包含边长为,,
,且等边三角形的边长为整数,
边长在到之间只能取9或10,
综上所述:该等边三角形的边长可以为9或10或18.
故答案是:9或10或18.
18.(2021·浙江温州·中考真题)图1是邻边长为2和6的矩形,它由三个小正方形组成,将其剪拼成不重叠、无缝隙的大正方形(如图2),则图1中所标注的的值为______;记图1中小正方形的中心为点,,,图2中的对应点为点,,.以大正方形的中心为圆心作圆,则当点,,在圆内或圆上时,圆的最小面积为______.
【答案】
【分析】
(1)先求出剪拼后大正方形的面积,得到其边长,再结合图2,求出图1中长方形的长边除去长为d部分的线段后,剩下的线段长刚好为大正方形的边长,最后用图1中的长方形的长减去图2中大正方形的边长即可完成求解;
(2)结合两图分别求出对应线段的长,通过作辅助线构造直角三角形,利用勾股定理求出O点到、、之间的距离即可确定最小圆的半径,即可完成求解.
【详解】
解:∵图1是邻边长为2和6的矩形,它由三个小正方形组成,
∴每个小正方形边长为2,图1和图2中整个图形的面积为,
所以图2中正方形的边长,如下图3所示;
∴图1中,;
分别连接、、,并分别过点、、向大正方形的对边作垂线,得到如图所示辅助线,
综合两图可知,,,,O点到大正方形各边距离为,
∴,,
∴;
综合两图可知:,,,
∴,,
∴;
继续综合两图可知:,
∴,
∴,
∵,
∴距离O点最远,
∴最小圆的半径应为,
∴圆的面积为;
故答案为:;.
19.(2021·山东青岛·中考真题)已知正方形的边长为3,为上一点,连接并延长,交的延长线于点,过点作,交于点,交于点,为的中点,为上一动点,分别连接,.若,则的最小值为__________.
【答案】
【分析】
由正方形的性质,可得A点与C点关于BD对称,则有MN +CM=MN+AM≥AN,所以当A、M、N三点共线时,MN+CM的值最小为AN,先证明△DCG~△FCE,再由,可得,分别求出DE=1,CE=2,CF=6,即可求出AN.
【详解】
解:∵四边形ABCD是正方形,
∴A点与C点关于BD对称,
∴CM=AM,
∴MN+CM=MN+AM≥AN,
∴当A、M、N三点共线时,MN+CM的值最小,
∵AD∥CF,
∴∠DAE=∠F,
∵∠DAE+∠DEH=90°,
∵DG⊥AF,
∴∠CDG+∠DEH=90°,
∴∠DAE=∠CDG,
∴∠CDG=∠F,
∴△DCG~△FCE,
∵,
∴ ,
∵正方形边长为3,
∴CF=6,
∵AD∥CF,
,
∴DE=1,CE=2,
在Rt△CEF中,EF2=CE2+CF2,
∴ ,
∵N是EF的中点,
,
在Rt△ADE中,EA2=AD2+DE2,
∴ ,
∴ ,
∴MN+MC的最小值为 .
故答案为:.
20.(2021·四川内江·中考真题)如图,矩形,,,点在轴正半轴上,点在轴正半轴上.当点在轴上运动时,点也随之在轴上运动,在这个运动过程中,点到原点的最大距离为 __.
【答案】##
【分析】
取 的中点 ,连接 , ,由勾股定理可求 的长,由直角三角形的性质可求 的长,由三角形的三边可求解.
【详解】
如图,取的中点,连接,,
矩形,,,
,,
点是的中点,
,
,
,点是的中点,
,
在中,,
当点在上时,,
的最大值为,
故答案为:.
21.(2021·四川内江·中考真题)如图,矩形中,,,对角线的垂直平分线交于点、交于点,则线段的长为 __.
【答案】##7.5
【分析】
根据矩形的性质和勾股定理求出BD,证明△BOF∽△BCD,根据相似三角形的性质得到比例式,求出EF即可.
【详解】
解:如图:
四边形是矩形,
,又,,
,
是的垂直平分线,
,,又,
,
,
,
解得,,
四边形是矩形,
,,
,
是的垂直平分线,
,,
在和中,
,
,
,
.
故答案为:.
三、解答题
22.(2021·吉林·中考真题)如图,点D在AB上,E在AC上,AB=AC,∠B=∠C,求证:AD=AE.
【答案】见解析
【分析】
根据全等三角形的判定定理ASA可以证得△ACD≌△ABE,然后由“全等三角形的对应边相等”即可证得结论.
【详解】
证明:在△ABE与△ACD中,
,
∴△ACD≌△ABE(ASA),
∴AD=AE(全等三角形的对应边相等).
23.(2021·山东青岛·中考真题)如图,在中,为边的中点,连接并延长,交的延长线于点,延长至点,使,分别连接,,.
(1)求证:;
(2)当平分时,四边形是什么特殊四边形?请说明理由.
【答案】(1)见解析;(2)矩形,见解析
【分析】
(1)利用平行四边形的性质证明,利用中点的性质证明,结合对顶角相等,从而可得结论;
(2)先证明 结合 证明四边形是平行四边形,再利用等腰三角形的性质证明 从而可得结论.
【详解】
(1)证明:∵四边形是平行四边形,
∴,∴
又∵为边的中点,
∴
∵,,,
∴
(2)答:四边形是矩形,理由如下:
∵四边形是平行四边形,
∴,
∵,
∴,,
∴,
∵,
∴四边形是平行四边形.
∵平分,
∴.
又∵,
∴,
∴
又∵,
∴,
∴,
∴是矩形
24.(2021·甘肃兰州·中考真题)已知正方形,,为平面内两点.
【探究建模】
(1)如图1,当点在边上时,,且,,三点共线.求证:;
【类比应用】
(2)如图2,当点在正方形外部时,,,且,,三点共线.猜想并证明线段,,之间的数量关系;
【拓展迁移】
(3)如图3,当点在正方形外部时,,,,且,,三点共线,与交于点.若,,求的长.
【答案】(1)见解析;(2);理由见解析(3)
【分析】
(1)根据正方形性质以及题意证明即可得出结论;
(2)根据已知条件证明,然后证明为等腰直角三角形即可得出结论;
(3)先证明,得出为等腰直角三角形,根据勾股定理以及等腰直角三角形的性质求出的长度,即可得出结论.
【详解】
解:(1)∵四边形是正方形,,,三点共线,
∴,
∵,
∴,
∴,
在和中,
,
∴,
∴;
(2)∵,四边形是正方形,
∴,,
∴,
∵,,
∴,
∴,
在和中,
,
∴,
∴,
∴为等腰直角三角形,
∴,
即;
(3)过点D作于点H,连接BD,
∵,
∵,
∴,
∵,
∴,
在和中,
,
∴,
∴,,
∵且,
∴为等腰直角三角形,
∴,
在中,,
∴,
∵是正方对角线,
∴,
∵
∴,
∴为等腰直角三角形,
∴,
∴在中,,
∴.
25.(2021·甘肃兰州·中考真题)如图,内接于,是的直径,为上一点,,延长交于点,.
(1)求证:是的切线;
(2)若,,求的长.
【答案】(1)见解析;(2)
【分析】
(1)根据,可得,根据对顶角相等可得,进而可得,根据,可得,结合,根据角度的转化可得,进而即可证明是的切线;
(2)根据,可得,设,则,分别求得,进而根据勾股定理列出方程解方程可得,进而根据即可求得.
【详解】
(1),
,
,
,
,
,
是直径,
,
,
是的切线;
(2),
,
,
设,则,
,,
在中,,
即,
解得(舍去),
.
26.(2021·辽宁沈阳·中考真题)在中,,中,(),,,,点B,C,E不共线,点P为直线上一点,且.
(1)如图1,点D在线段延长线上,则________,________,(用含的代数式表示);
(2)如图2,点A,E在直线同侧,求证:平分;
(3)若,,将图3中的绕点C按顺时针方向旋转,当时,直线交于点G,点M是中点,请直接写出的长.
【答案】(1),;(2)见解析;(3)的长为或.
【分析】
(1)利用三角形内角和定理以及等腰三角形的性质求解即可.
(2)如图2中,连接.证明,可得结论.
(3)分两种情形:如图中,设交于.图中,设交于,当时,利用三角形的中位线定理,可得,求出,可得结论.
【详解】
(1)解:如图1中,
,
,
,
,
,
,
,
,
,
(2)证明:如图2中,连接.
,,
,,
,
,
,
平分.
(3)解:如图中,设交于.
,,
是等腰直角三角形,
,,
垂直平分线段,
,
,
,
,
,是等边三角形,
,
,
,
,
,,
,
,
,
.
如图中,设交于,当时,同法可证.
,,
,
,
,,
,
,
,
,
综上所述,的长为或.
27.(2021·广西河池·中考真题)在平面直角坐标系中,抛物线与x轴交于A,B两点(A在B的右侧),与y轴交于点C.
(1)求直线CA的解析式;
(2)如图,直线与抛物线在第一象限交于点D,交CA于点E,交x轴于点F,于点G,若E为GA的中点,求m的值.
(3)直线与抛物线交于,两点,其中.若且,结合函数图象,探究n的取值范围.
【答案】(1);(2);(3)或.
【分析】
(1)由中,得,,,利用待定系数法即可得,直线CA的解析式为;
(2)根据直线与抛物线在第一象限交于点D,交CA于点E,交x轴于点F,可得,且,,,从而,,而是等腰直角三角形,可得,是等腰直角三角形,即可列,解得m=2或m=3(舍去);
(3)由得:或,①若,即,根据且,可得,且,即解得;②若,即,可得:且,即解得,综合可得结果.
【详解】
解:(1)在中,
令得,
令得或,
∴,,,
设直线CA的解析式为,则,
解得,
∴直线CA的解析式为;
(2)∵直线x=m与抛物线在第一象限交于点D,交CA于点E,交x轴于点F,
∴,且,,,
∴,,
∵,,
∴,是等腰直角三角形,
∴,,
∴是等腰直角三角形,
∴,
∵E为GA的中点,
∴,
∴,
解得或,
∵时,D与A重合,舍去,
∴;
(3)由得:或,
①若,即,
∵且,
∴,且,
解得;
②若,即,
可得:且,
解得.
综上所述,n的取值范围是或.
相关试卷
这是一份2023 物理新中考二轮复习热点透析 核心考点16 电功,文件包含2023物理新中考二轮复习热点透析核心考点16电功解析版docx、2023物理新中考二轮复习热点透析核心考点16电功原卷版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
这是一份2023 物理新中考二轮复习热点透析 核心考点10 浮力,文件包含2023物理新中考二轮复习热点透析核心考点10浮力解析版docx、2023物理新中考二轮复习热点透析核心考点10浮力原卷版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。
这是一份2023 物理新中考二轮复习热点透析 核心考点06 内能的利用,文件包含2023物理新中考二轮复习热点透析核心考点06内能的利用解析版docx、2023物理新中考二轮复习热点透析核心考点06内能的利用原卷版docx等2份试卷配套教学资源,其中试卷共18页, 欢迎下载使用。