初中数学中考复习 重组卷02(解析版)
展开冲刺2020年中考数学精选真题重组卷
山西卷02
班级___________ 姓名___________ 学号____________ 分数____________
第 I 卷 选 择 题 ( 共 30 分)
一 、选 择 题( 本 大 题 共 10 个 小 题 ,每 小 题 3 分 ,共 30 分 ,在 每 个 小 题 给 出 的 四 个 选 项 中 ,只 有 一项符合题目要求 , 请选出并在答题卡 上 将该项涂黑)
1.(2019·宿迁)2019的相反数是( )
A. B.-2019 C. D.2019
【答案】B
【解析】2019的相反数是-2019.故选B.
【名师点睛】本题考查了相反数.
2.(2019·南充)下列各式计算正确的是( )
A. B.
C. D.
【答案】D
【解析】A、x+x2,无法计算,故此选项错误;B、(x2)3=x6,故此选项错误;
C、x6÷x2=x4,故此选项错误;D、x·x2=x3,故此选项正确,故选D.
【名师点睛】本题考查了整式的运算.
3.(2019•河南)下列计算正确的是( )
A.2a+3a=6a B.(-3a)2=6a2
C.(x-y)2=x2-y2 D.
【答案】D
【解析】2a+3a=5a,A错误;(-3a)2=9a2,B错误;
(x-y)2=x2-2xy+y2,C错误;,D正确,故选D.
【名师点睛】本题考了合并同类型、积的乘方、完全平方公式、无理数计算.
4.(2019•长春)如图是由4个相同的小正方体组成的立体图形,这个立体图形的主视图是( )
A. B.
C. D.
【答案】A
【解析】从正面看易得第一层有2个正方形,第二层最右边有一个正方形.故选A.
【名师点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.
5.(2019•河南)如图,在四边形ABCD中,AD∥BC,∠D=90°,AD=4,BC=3.分别以点A,C为圆心,大于AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若点O是AC的中点,则CD的长为( )
A.2 B.4 C.3 D.
【答案】A
【解析】如图,连接FC,则AF=FC.
∵AD∥BC,∴∠FAO=∠BCO.
在△FOA与△BOC中,,∴△FOA≌△BOC(ASA),
∴AF=BC=3,∴FC=AF=3,FD=AD-AF=4-3=1.
在△FDC中,∵∠D=90°,∴CD2+DF2=FC2,∴CD2+12=32,∴CD=2.故选A.
【名师点睛】本题考查了直角三角形、点、线段、射线以及全等三角形的判定与性质.
6.(2018·山东滨州)把不等式组中每个不等式的解集在同一条数轴上表示出来,正确的为( )
A. B. C. D.
【答案】B
【解析】分析:先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.
详解:解不等式x+1≥3,得:x≥2,
解不等式﹣2x﹣6>﹣4,得:x<﹣1,
将两不等式解集表示在数轴上如下:
故选B.
【名师点睛】本题考查了解一元一次不等式组,在数轴上表示不等式组的解集时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.
7.(2018·连云港)地球上陆地的面积约为150 000 000km2.把“150 000 000”用科学记数法表示为( )
A. 1.5×108 B. 1.5×107 C. 1.5×109 D. 1.5×106
【答案】A
分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
详解:150 000 000=1.5×108,故选:A.
【名师点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
8.(2018·盐城)已知一元二次方程x2+kx-3=0有一个根为1,则k的值为( )
A. -2 B. 2 C. -4 D. 4
【答案】B
【解析】分析:根据一元二次方程的解的定义,把把x=1代入方程得关于k的一次方程1-3+k=0,然后解一次方程即可.
详解:把x=1代入方程得1+k-3=0,
解得k=2.
故选:B.
【名师点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.
9.(2018·连云港)如图,菱形ABCD的两个顶点B、D在反比例函数y=kx的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(1,1),∠ABC=60°,则k的值是( )
A. ﹣5 B. ﹣4 C. ﹣3 D. ﹣2
【答案】C
【解析】分析:根据题意可以求得点B的坐标,从而可以求得k的值.
详解:∵四边形ABCD是菱形,
∴BA=BC,AC⊥BD,
∵∠ABC=60°,
∴△ABC是等边三角形,
∵点A(1,1),
∴OA=2,
∴BO=,
∵直线AC的解析式为y=x,
∴直线BD的解析式为y=-x,
∵OB=6,
∴点B的坐标为(−3,3),
∵点B在反比例函数y=kx的图象上,
∴3=k-3,
解得,k=-3,
故选:C.
【名师点睛】本题考查了反比例函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.
10.(2019•福建)如图,PA、PB是⊙O切线,A、B为切点,点C在⊙O上,且∠ACB=55°,则∠APB等于( )
A.55° B.70° C.110° D.125°
【答案】B
【解析】连接OA,OB,∵PA,PB是⊙O的切线,∴PA⊥OA,PB⊥OB,∵∠ACB=55°,∴∠AOB=110°,
∴∠APB=360°-90°-90°-110°=70°.故选B.
【名师点睛】本题考查了圆的基本概念.
第 II卷 非 选 择 题 ( 共 90 分)
二 、 填 空 题 ( 本 大 题 共 5 个 小 题 , 每 小 题 3 分 , 共 15 分)
11.(2019•益阳)化简:=____________
【解析】原式==.
【名师点睛】本题考查了分式混合运算,先算括号里面的,再根据分式的除法法则进行计算.
12.(2019•山西)要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比,从“扇形统计图”,“条形统计图”,“折线统计图”中选择一种统计图,最适合的统计图是__________.
【答案】扇形统计图
【解析】要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比,最适合的统计图是扇形统计图.故答案为:扇形统计图.
【名师点睛】此题应根据条形统计图、折线统计图、扇形统计图各自的特点进行解答.
问题的关键.条形统计图能清楚地表示出每个项目的数据.也考查了加权平均数.
13.(2019•甘肃)分式方程的解为__________.
【答案】
【解析】去分母得:3x+6=5x+5,解得:x=,
经检验x=是分式方程的解.故答案为:.
【名师点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
14.(2019•烟台)如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解为__________.
【答案】x<1
【解析】点P(m,3)代入y=x+2,∴m=1,∴P(1,3),结合图象可知x+2≤ax+c的解为x<1,
【名师点睛】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y与x的函数关系,然后根据二次函数和一次函数图象与性质解决问题.
15.(2019•本溪)在平面直角坐标系中,点A,B的坐标分别是A(4,2),B(5,0),以点O为位似中心,相似比为,把△ABO缩小,得到△A1B1O,则点A的对应点A1的坐标为__________.
【答案】(2,1)或(-2,-1)
【解析】以点O为位似中心,相似比为,把△ABO缩小,点A的坐标是A(4,2),
则点A的对应点A1的坐标为(4×,2×)或(-4×,-2×),即(2,1)或(-2,-1),故答案为:(2,1)或(-2,-1).
【名师点睛】本题考查了图形的位似.
三 、 解 答 题 ( 本 大 题 共 8 个 小 题 , 共 75 分 .解 答 应 写 出 文 字 说 明 , 证 明 过 程 或 演 算 步 骤 )
16.(本题共 2 个 小 题 , 每 小 题 5 分,共 10 分)
(1)(2018•衢州)计算:|﹣2|﹣9+23﹣(1﹣π)0.
【答案】6
【解析】分析:本题涉及绝对值、零指数幂、乘方、二次根式化简4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.
详解:原式=2﹣3+8﹣1=6.
【名师点睛】本题考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.
(2)(2019•天津)方程组
【答案】
【解析】,①+②得,x=2,
把x=2代入①得,6+2y=7,解得y=,
故原方程组的解为:.故选D.
【名师点睛】本题主要考查了二元一次方程组的解法,熟练掌握二元一次方程组的基本解法是解答本题的关键.
17.(本题7分)(2019•南京)如图,D是△ABC的边AB的中点,DE∥BC,CE∥AB,AC与DE相交于点F.求证:△ADF≌△CEF.
【解析】∵DE∥BC,CE∥AB,
∴四边形DBCE是平行四边形,
∴BD=CE,
∵D是AB的中点,
∴AD=BD,
∴AD=EC,
∵CE∥AD,
∴∠A=∠ECF,∠ADF=∠E,
∴△ADF≌△CEF.
【名师点睛】本题考查了平行四边形的判定和全等三角形判定.
18.(本题9分)(2019•福建)某种机器使用期为三年,买方在购进机器时,可以给各台机器分别一次性额外购买若干次维修服务,每次维修服务费为2000元.每台机器在使用期间,如果维修次数未超过购机时购买的维修服务次数,每次实际维修时还需向维修人员支付工时费500元;如果维修次数超过购机时购买的维修服务次数,超出部分每次维修时需支付维修服务费5000元,但无需支付工时费.某公司计划购买1台该种机器,为决策在购买机器时应同时一次性额外购买几次维修服务,搜集并整理了100台这种机器在三年使用期内的维修次数,整理得下表;
维修次数
8
9
10
11
12
频率(台数)
10
20
30
30
10
(1)以这100台机器为样本,估计“1台机器在三年使用期内维修次数不大于10”的概率;
(2)试以这100机器维修费用的平均数作为决策依据,说明购买1台该机器的同时应一次性额外购10次还是11次维修服务?
【答案】(1)“1台机器在三年使用期内维修次数不大于10”的概率为0.6.(2)购买1台该机器的同时应一次性额外购10次维修服务更合适.
【解析】(1)“1台机器在三年使用期内维修次数不大于10”的概率==0.6.
(2)购买10次时,
某台机器使用期内维修次数
8
9
10
11
12
该台机器维修费用
24000
24500
25000
30000
35000
此时这100台机器维修费用的平均数y1=(24000×10+24500×20+25000×30+30000×30+35000×10)=27300;
购买11次时,
某台机器使用期内维修次数
8
9
10
11
12
该台机器维修费用
26000
26500
27000
27500
32500
此时这100台机器维修费用的平均数
y2=(26000×10+26500×20+27000×30+27500×30+32500×10)=27500,
∵27300<27500,
所以,选择购买10次维修服务.
【名师点睛】本题考查了概率计算.
19.(本题8分)(2019•宿迁)超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加元,每天售出件.
(1)请写出与之间的函数表达式;
(2)当为多少时,超市每天销售这种玩具可获利润2250元?
(3)设超市每天销售这种玩具可获利元,当为多少时最大,最大值是多少?
【解析】(1)根据题意得,.
(2)根据题意得,,
解得:,,
∵每件利润不能超过60元,
∴,
答:当为10时,超市每天销售这种玩具可获利润2250元.
(3)根据题意得,,
∵,
∴当时,随的增大而增大,
∴当时,.
【名师点睛】本题考查了一元二次方程和二次函数的应用.
20.(本题9分)(2019•安徽)筒车是我国古代发明的一种水利灌溉工具.如图1,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理.如图2,筒车盛水桶的运行轨迹是以轴心O为圆心的圆.已知圆心在水面上方,且圆被水面截得的弦AB长为6米,∠OAB=41.3°,若点C为运行轨道的最高点(C,O的连线垂直于AB),求点C到弦AB所在直线的距离.
(参考数据:sin41.3°≈0.66,cos41.3°≈0.75,tan41.3°≈0.88)
【答案】点C到弦AB所在直线的距离为6.64米.
【解析】如图,连接CO并延长,与AB交于点D,
∵CD⊥AB,∴AD=BD=AB=3(米),
在Rt△AOD中,∠OAB=41.3°,
∴cos41.3°=,即OA===4(米),
tan41.3°=,即OD=AD•tan41.3°=3×0.88=2.64(米),
则CD=CO+OD=4+2.64=6.64(米).
【名师点睛】此题考查了解直角三角形的应用,垂径定理,以及圆周角定理,熟练掌握各自的性质是解本题的关键.
21.(本题8分)(2019•天津)在平面直角坐标系中,O为原点,点A(6,0),点B在y轴的正半轴上,∠ABO=30°.矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD=2.
(Ⅰ)如图①,求点E的坐标;
(Ⅱ)将矩形CODE沿x轴向右平移,得到矩形C′O′D′E′,点C,O,D,E的对应点分别为C′,O′,D′,E′.设OO′=t,矩形C′O′D′E′与△ABO重叠部分的面积为S.
①如图②,当矩形C′O′D′E′与△ABO重叠部分为五边形时,C′E′,E′D′分别与AB相交于点M,F,试用含有t的式子表示S,并直接写出t的取值范围;
②当S≤5时,求t的取值范围(直接写出结果即可).
【解析】(Ⅰ)∵点A(6,0),
∴OA=6,
∵OD=2,
∴AD=OA-OD=6-2=4,
∵四边形CODE是矩形,
∴DE∥OC,
∴∠AED=∠ABO=30°,
在Rt△AED中,AE=2AD=8,ED4,
∵OD=2,
∴点E的坐标为(2,4).
(Ⅱ)①由平移的性质得:O′D′=2,E′D′=4,ME′=OO′=t,D′E′∥O′C′∥OB,
∴∠E′FM=∠ABO=30°,
∴在Rt△MFE′中,MF=2ME′=2t,FE′t,
∴S△MFE′ME′·FE′tt,
∵S矩形C′O′D′E′=O′D′·E′D′=2×48,
∴S=S矩形C′O′D′E′-S△MFE′=8,
∴St2+8,其中t的取值范围是:0
O'A=OA-OO'=6-t,
∵∠AO'F=90°,∠AFO'=∠ABO=30°,
∴O'FO'A(6-t),
∴S(6-t)(6-t),
解得:t=6,或t=6(舍去),
∴t=6;当S=5时,如图④所示:
O'A=6-t,D'A=6-t-2=4-t,
∴O'G(6-t),D'F(4-t),
∴S[(6-t)(4-t)]×2=5,
解得:t,
∴当S≤5时,t的取值范围为t≤6.
【名师点睛】本题是四边形综合题目,考查了矩形的性质、坐标与图形性质、勾股定理、平移的性质、直角三角形的性质、梯形面积公式等知识;本题综合性强,有一定难度,熟练掌握含30°角的直角三角形的性质时是解题的关键.
22.(本题11分)(2019•陕西)问题提出:
(1)如图1,已知△ABC,试确定一点D,使得以A,B,C,D为顶点的四边形为平行四边形,请画出这个平行四边形;
问题探究:
(2)如图2,在矩形ABCD中,AB=4,BC=10,若要在该矩形中作出一个面积最大的△BPC,且使
∠BPC=90°,求满足条件的点P到点A的距离;
问题解决:
(3)如图3,有一座塔A,按规定,要以塔A为对称中心,建一个面积尽可能大的形状为平行四边形的景区BCDE.根据实际情况,要求顶点B是定点,点B到塔A的距离为50米,∠CBE=120°,那么,是否可以建一个满足要求的面积最大的平行四边形景区BCDE?若可以,求出满足要求的平行四边形BCDE的最大面积;若不可以,请说明理由.(塔A的占地面积忽略不计)
【解析】(1)如图记为点D所在的位置.
(2)如图,
∵AB=4,BC=10,∴取BC的中点O,则OB>AB.
∴以点O为圆心,OB长为半径作⊙O,⊙O一定于AD相交于P1,P2两点,
连接BP1,P1C,P1O,∵∠BPC=90°,点P不能再矩形外,
∴△BPC的顶点P1或P2位置时,△BPC的面积最大,
作P1E⊥BC,垂足为E,则OE=3,
∴AP1=BE=OB-OE=5-3=2,
由对称性得AP2=8.
(3)可以,如图所示,连接BD,
∵A为BCDE的对称中心,BA=50,∠CBE=120°,
∴BD=100,∠BED=60°,
作△BDE的外接圆⊙O,则点E在优弧上,取的中点E′,连接E′B,E′D,
则E′B=E′D,且∠BE′D=60°,∴△BE′D为正三角形.
连接E′O并延长,经过点A至C′,使E′A=AC′,连接BC′,DC′,
∵E′A⊥BD,
∴四边形E′D为菱形,且∠C′BE′=120°,
作EF⊥BD,垂足为F,连接EO,则EF≤EO+OA-E′O+OA=E′A,
∴S△BDE·BD·EF·BD·E′A=S△E′BD,
∴S平行四边形BCDE≤S平行四边形BC′DE′=2S△E′BD=1002·sin60°=5000(m2),
所以符合要求的BCDE的最大面积为5000m2.
【名师点睛】本题属于四边形综合题,考查了平行四边形的判定和性质,圆周角定理,三角形的面积等知识,解题的关键是理解题意,学会添加常用辅助线,属于中考压轴题.
23.(本题13分)(2019•广西南宁)如果抛物线C1的顶点在拋物线C2上,抛物线C2的顶点也在拋物线C1上时,那么我们称抛物线C1与C2“互为关联”的抛物线.如图1,已知抛物线C1:y1=x2+x与C2:y2=ax2+x+c是“互为关联”的拋物线,点A,B分别是抛物线C1,C2的顶点,抛物线C2经过点D(6,–1).
(1)直接写出A,B的坐标和抛物线C2的解析式;
(2)抛物线C2上是否存在点E,使得△ABE是直角三角形?如果存在,请求出点E的坐标;如果不存在,请说明理由;
(3)如图2,点F(–6,3)在抛物线C1上,点M,N分别是抛物线C1,C2上的动点,且点M,N的横坐标相同,记△AFM面积为S1(当点M与点A,F重合时S1=0),△ABN的面积为S2(当点N与点A,B重合时,S2=0),令S=S1+S2,观察图象,当y1≤y2时,写出x的取值范围,并求出在此范围内S的最大值.
【答案】(1)A(–2,–1),B(2,3),y2=–x2+x+2;(2)存在,∴E(6,–1)或E(10,–13);(3)x的取值范围为–2≤x≤2,S的最大值为16.
【解析】(1)C1顶点在C2上,C2顶点也在C1上,
由抛物线C1:y1=x2+x可得A(–2,–1),
将A(–2,–1),D(6,–1)代入y2=ax2+x+c
得,解得 ,
∴y2=–x2+x+2,∴B(2,3);
(2)易得直线AB的解析式:y=x+1,
①若B为直角的顶点,BE⊥AB,kBE•kAB=–1,
∴kBE=–1,则直线BE的解析式为y=–x+5.
联立,
解得或,此时E(6,–1);
②若A为直角顶点,AE⊥AB,kAE•kAB=–1,
∴kAE=–1,则直线AE的解析式为y=–x–3,
联立,
解得或,
此时E(10,–13);
③若E为直角顶点,设E(m,–m2+m+2)
由AE⊥BE得kBE•kAE=–1,
即,
解得m=2或–2(不符合题意均舍去),
∴存在,∴E(6,–1)或E(10,–13);
(3)∵y1≤y2,观察图形可得:x的取值范围为–2≤x≤2,
设M(t,t2+t),N(t,−t2+t+2),且–2≤t≤2,
易求直线AF的解析式:y=–x–3,
过M作x轴的平行线MQ交AF于Q,
由yQ=yM,得Q(t2−t−3,t2+t),
S1=|QM|•|yF–yA|=t2+4t+6,
设AB交MN于点P,易知P坐标为(t,t+1),
S2=|PN|•|xA–xB|=2–t2,
S=S1+S2=4t+8,
当t=2时,S的最大值为16.
【名师点睛】本题考查了二次函数,熟练运用二次函数的性质、直角三角形的性质以及一次函数的性质是解题的关键.
初中数学中考复习 重组卷05(解析版): 这是一份初中数学中考复习 重组卷05(解析版),共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中数学中考复习 重组卷03(解析版): 这是一份初中数学中考复习 重组卷03(解析版),共17页。
初中数学中考复习 重组卷02(原卷版): 这是一份初中数学中考复习 重组卷02(原卷版),共6页。试卷主要包含了已知点A,估计的值在等内容,欢迎下载使用。