终身会员
搜索
    上传资料 赚现金

    初中数学中考复习 专题03 相似三角形的存在性问题(解析版)

    立即下载
    加入资料篮
    初中数学中考复习 专题03  相似三角形的存在性问题(解析版)第1页
    初中数学中考复习 专题03  相似三角形的存在性问题(解析版)第2页
    初中数学中考复习 专题03  相似三角形的存在性问题(解析版)第3页
    还剩54页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学中考复习 专题03 相似三角形的存在性问题(解析版)

    展开

    这是一份初中数学中考复习 专题03 相似三角形的存在性问题(解析版),共57页。
    玩转压轴题,争取满分之备战2018年中考数学解答题高端精品
    专题三 相似三角形的存在性问题
    【考题研究】
    相似三角形的存在性问题是近几年中考数学的热点问题.解相似三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根。难点在于寻找分类标准,分类标准寻找的恰当,可以使得解的个数不重复不遗漏,也可以使得列方程和解方程又好又快.
    【解题攻略】
    相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.
    判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验。
    应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等.
    应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组).
    【解题类型及其思路】
    相似三角形存在性问题需要注意的问题:
    1、若题目中问题为△ABC∽△DEF ,则对应线段已经确定。
    2、若题目中为△ABC与 △DEF相似,则没有确定对应线段,此时有三种情况:①△ABC∽△DEF ,
    ②△ABC∽△FDE、 ③△ABC∽△EFD、
    3、若题目中为△ABC与 △DEF并且有 ∠A、 ∠D(或为90°),则确定了一条对应的线段,此时有二种情况:①、△ABC∽△DEF ,②、△ABC∽△DFE 需要分类讨论上述的各种情况。
    【典例指引】
    类型一 【确定符合相似三角形的点的坐标】
    典例指引1.(2019·贵州中考真题)如图,抛物线与直线分别相交于,两点,且此抛物线与轴的一个交点为,连接,.已知,.

    (1)求抛物线的解析式;
    (2)在抛物线对称轴上找一点,使的值最大,并求出这个最大值;
    (3)点为轴右侧抛物线上一动点,连接,过点作交轴于点,问:是否存在点使得以,,为顶点的三角形与相似?若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.
    【答案】(1);(2)点M的坐标为(,)时,取最大值为;(3)存在点.
    【解析】
    【分析】
    (1)根据待定系数法求解即可;
    (2)根据三角形的三边关系可知:当点、、三点共线时,可使的值最大,据此求解即可;
    (3)先求得,再过点作于点,过点作轴于点,如图,这样就把以,,为顶点的三角形与相似问题转化为以,,为顶点的三角形与相似的问题,再分当时与时两种情况,分别求解即可.
    【详解】
    解:(1)将,代入得:
    ,解得:,
    ∴抛物线的解析式是;
    (2)解方程组:,得,,
    ∵,∴
    当点、、三点不共线时,根据三角形三边关系得,
    当点、、三点共线时,,
    ∴当点、、三点共线时,取最大值,即为的长,
    如图,过点作BE⊥x轴于点,则在中,由勾股定理得:,∴取最大值为;
    易求得直线BC的解析式为:y=-x-3,抛物线的对称轴是直线,当时,,∴点M的坐标为(,);
    ∴点M的坐标为(,)时,取最大值为;

    (3)存在点,使得以、、为顶点的三角形与相似.
    设点坐标为,
    在中,∵,∴,
    在中,∵,∴,
    ∴,,
    过点作于点,过点作轴于点,如图,
    ∵,,∴∽,
    ∵,
    ∴①当时,∽,
    ∴,解得,,(舍去)
    ∴点的纵坐标为,∴点为;
    ②当时,∽,
    ∴,解得(舍去),(舍去),
    ∴此时无符合条件的点;
    综上所述,存在点.
    【名师点睛】
    本题考查的是二次函数的综合运用,主要考查待定系数法求二次函数的解析式、相似三角形的判定与性质、一元二次方程的解法、两函数的交点和线段差的最值等问题,其中(1)题是基础题型,(2)题的求解需运用三角形的三边关系,(3)题要注意分类求解,避免遗漏,解题的关键是熟练掌握二次函数图象上点的坐标特征、相似三角形的判定与性质以及一元二次方程的解法.
    【举一反三】
    (2019·海南模拟)抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).
    (1)求该抛物线所对应的函数解析式;
    (2)该抛物线与直线 相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.
    ①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;
    ②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.

    【答案】(1);(2)① ;② 存在,((2,)或(,).
    【解析】
    【详解】
    试题分析:(1)由A、B两点的坐标,利用待定系数法可求得抛物线解析式;
    (2)①可设出P点坐标,则可表示出M、N的坐标,联立直线与抛物线解析式可求得C、D的坐标,过C、D作PN的垂线,可用t表示出△PCD的面积,利用二次函数的性质可求得其最大值;
    ②当△CNQ与△PBM相似时有 或两种情况,利用P点坐标,可分别表示出线段的长,可得到关于P点坐标的方程,可求得P点坐标.
    试题解析:(1)∵抛物线经过点A(1,0)和点B(5,0),
    ∴ ,解得
    ∴该抛物线对应的函数解析式为 ;
    (2)①∵点P是抛物线上的动点且位于x轴下方,
    ∴可设P(t,)(1<t<5),
    ∵直线PM∥y轴,分别与x轴和直线CD交于点M、N,
    ∴M(t,0),N(t,),
    ∴.
    联立直线CD与抛物线解析式可得 ,解得 或,
    ∴C(0,3),D(7, ),
    分别过C、D作直线PN的直线,垂足分别为E、F,如图1,

    则CE=t,DF=7﹣t,
    ∴ ,
    ∴当时,△PCD的面积有最大值,最大值为;
    ②存在.

    ∵∠CQN=∠PMB=90°,
    ∴当△CNQ与△PBM相似时,有 或两种情况,
    ∵CQ⊥PM,垂足为Q,
    ∴Q(t,3),且C(0,3),N(t, ),
    ∴CQ=t,,
    ∴ ,
    ∵P(t,),M(t,0),B(5,0),
    ∴BM=5﹣t,,
    当时,则,即,解得t=2或t=5(舍去),此时P(2, );
    当时,则,即,解得或(舍去),此时P(,);
    综上可知存在满足条件的点P,其坐标为P(2,)或(,).
    类型二 【确定符合相似三角形的动点的运动时间或路程等】
    典例指引2.
    (2019年广东模拟)如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线经过O,D,C三点.
    (1)求AD的长及抛物线的解析式;
    (2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动,设运动时间为t秒,当t为何值时,以P,Q,C为顶点的三角形与△ADE相似?
    (3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.

    【解析】
    (1)根据折叠图形的轴对称性,△CED、△CBD全等,首先在Rt△CEO中求出OE的长,进而可得到AE的长;在Rt△AED中,AD=AB-BD、ED=BD,利用勾股定理可求出AD的长.进一步能确定D点坐标,利用待定系数法即可求出抛物线的解析式;
    (2)由于∠DEC=90°,首先能确定的是∠AED=∠OCE,若以P、Q、C为顶点的三角形与△ADE相似,那么∠QPC=90°或∠PQC=90°,然后在这两种情况下,分别利用相似三角形的对应边成比例求出对应的t的值;
    (3)由于以M,N,C,E为顶点的四边形,边和对角线都没明确指出,所以要分情况进行讨论:
    ①EC做平行四边形的对角线,那么EC、MN必互相平分,由于EC的中点正好在抛物线对称轴上,所以M点一定是抛物线的顶点;
    ②EC做平行四边形的边,那么EC、MN平行且相等,首先设出点N的坐标,然后结合E、C的横、纵坐标差表示出M点坐标,再将点M代入抛物线的解析式中,即可确定M、N的坐标.
    试题解析:(1)∵四边形ABCO为矩形,
    ∴∠OAB=∠AOC=∠B=90°,AB=CO=8,AO=BC=10,
    由题意,得△BDC≌△EDC,
    ∴∠B=∠DEC=90°,EC=BC=10,ED=BD,
    由勾股定理易得EO=6,
    ∴AE=10﹣6=4,
    设AD=x,则BD=ED=8﹣x,由勾股定理,得 ,
    解得,x=3,∴AD=3,
    ∵抛物线过点D(3, 10),C(8, 0),O(0, 0),
    ∴,解得 ,
    ∴抛物线的解析式为: ;

    (2)∵∠DEA+∠OEC=90°,∠OCE+∠OEC=90°,
    ∴∠DEA=∠OCE,
    由(1)可得AD=3,AE=4,DE=5,
    而CQ=t,EP=2t,∴PC=10﹣2t,
    当∠PQC=∠DAE=90°,△ADE∽△QPC,
    ∴,即 ,
    解得,
    当∠QPC=∠DAE=90°,△ADE∽△PQC,
    ∴,即 , 解得,
    ∴当或时,以P、Q、C为顶点的三角形与△ADE相似;
    (3)假设存在符合条件的M、N点,分两种情况讨论:
    ①EC为平行四边形的对角线,由于抛物线的对称轴经过EC中点,若四边形MENC是平行四边形,那么M点必为抛物线顶点; 则: ;而平行四边形的对角线互相平分,那么线段MN必被EC中点(4,3)平分,则;
    ②EC为平行四边形的边,则EC//MN,EC =MN,设N(4,m),
    则M(4﹣8,m+6)或M(4+8,m﹣6);
    将M(﹣4,m+6)代入抛物线的解析式中,得:m=﹣38,
    此时 N(4,﹣38)、M(﹣4,﹣32);
    将M(12,m﹣6)代入抛物线的解析式中,得:m=﹣26,
    此时 N(4,﹣26)、M(12,﹣32);
    综上,存在符合条件的M、N点,且它们的坐标为:
    ①, ; ②, ;
    ③, .
    【名师点睛】
    本题考查了二次函数综合题,题目涉及了图形的折叠变换、相似三角形的判定和性质、平行四边形的判定和性质等重点知识.后两问的情况较多,需要进行分类讨论,以免漏解.
    【举一反三】
    (2019·湖南模拟)如图,已知直线y=-x+3与x轴、y轴分别交于A,B两点,抛物线y=-x2+bx+c经过A,B两点,点P在线段OA上,从点O出发,向点A以1个单位/秒的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B以个单位/秒的速度匀速运动,连接PQ,设运动时间为t秒.

    (1)求抛物线的解析式;
    (2)问:当t为何值时,△APQ为直角三角形;
    (3)过点P作PE∥y轴,交AB于点E,过点Q作QF∥y轴,交抛物线于点F,连接EF,当EF∥PQ时,求点F的坐标;
    (4)设抛物线顶点为M,连接BP,BM,MQ,问:是否存在t的值,使以B,Q,M为顶点的三角形与以O,B,P为顶点的三角形相似?若存在,请求出t的值;若不存在,请说明理由.
    【答案】(1)y=-x2+2x+3;(2)t=1或t=;(3)点F的坐标为(2,3).(4).
    【解析】
    【详解】
    试题分析:(1)先由直线AB的解析式为y=-x+3,求出它与x轴的交点A、与y轴的交点B的坐标,再将A、B两点的坐标代入y=-x2+bx+c,运用待定系数法即可求出抛物线的解析式;
    (2)由直线与两坐标轴的交点可知:∠QAP=45°,设运动时间为t秒,则QA=t,PA=3-t,然后再图①、图②中利用特殊锐角三角函数值列出关于t的方程求解即可;
    (3)设点P的坐标为(t,0),则点E的坐标为(t,-t+3),则EP=3-t,点Q的坐标为(3-t,t),点F的坐标为(3-t,-(3-t)2+2(3-t)+3),则FQ=3t-t2,EP∥FQ,EF∥PQ,所以四边形为平行线四边形,由平行四边形的性质可知EP=FQ,从而的到关于t的方程,然后解方程即可求得t的值,然后将t=1代入即可求得点F的坐标;
    (4)设运动时间为t秒,则OP=t,BQ=(3-t),然后由抛物线的解析式求得点M的坐标,从而可求得MB的长度,然后根据相似相似三角形的性质建立关于t的方程,然后即可解得t的值.
    试题解析:(1)∵y=-x+3与x轴交于点A,与y轴交于点B,
    ∴当y=0时,x=3,即A点坐标为(3,0),
    当x=0时,y=3,即B点坐标为(0,3),
    将A(3,0),B(0,3)代入y=-x2+bx+c,
    得,解得
    ∴抛物线的解析式为y=-x2+2x+3;
    (2)∵OA=OB=3,∠BOA=90°,
    ∴∠QAP=45°.

    如图①所示:∠PQA=90°时,设运动时间为t秒,则QA=t,PA=3-t.
    在Rt△PQA中,,即:,解得:t=1;
    如图②所示:∠QPA=90°时,设运动时间为t秒,则QA=t,PA=3-t.
    在Rt△PQA中,,即:,解得:t=.
    综上所述,当t=1或t=时,△PQA是直角三角形;
    (3)如图③所示:

    设点P的坐标为(t,0),则点E的坐标为(t,-t+3),则EP=3-t,点Q的坐标为(3-t,t),点F的坐标为(3-t,-(3-t)2+2(3-t)+3),则FQ=3t-t2.
    ∵EP∥FQ,EF∥PQ,
    ∴EP=FQ.即:3-t=3t-t2.
    解得:t1=1,t2=3(舍去).
    将t=1代入F(3-t,-(3-t)2+2(3-t)+3),得点F的坐标为(2,3).
    (4)如图④所示:

    设运动时间为t秒,则OP=t,BQ=(3-t).
    ∵y=-x2+2x+3=-(x-1)2+4,
    ∴点M的坐标为(1,4).
    ∴MB=.
    当△BOP∽△QBM时,即:,整理得:t2-3t+3=0,
    △=32-4×1×3<0,无解:
    当△BOP∽△MBQ时,即:,解得t=.
    ∴当t=时,以B,Q,M为顶点的三角形与以O,B,P为顶点的三角形相似.
    类型三 【确定符合相似三角形的函数解析式或字母参数的值】
    典例指引3.(2019·江苏中考真题)如图,二次函数图象的顶点为,对称轴是直线,一次函数的图象与轴交于点,且与直线关于的对称直线交于点.

    (1)点的坐标是 ______;
    (2)直线与直线交于点,是线段上一点(不与点、重合),点的纵坐标为.过点作直线与线段、分别交于点,,使得与相似.
    ①当时,求的长;
    ②若对于每一个确定的的值,有且只有一个与相似,请直接写出的取值范围 ______.
    【答案】(1);(2)①;②.
    【解析】
    【分析】
    (1)直接用顶点坐标公式求即可;
    (2)由对称轴可知点C(2,),A(-,0),点A关于对称轴对称的点(,0),借助AD的直线解析式求得B(5,3);①当n=时,N(2,),可求DA=,DN=,CD=,当PQ∥AB时,△DPQ∽△DAB,DP=9;当PQ与AB不平行时,DP=9;②当PQ∥AB,DB=DP时,DB=3,DN=,所以N(2,),则有且只有一个△DPQ与△DAB相似时,<n<.
    【详解】
    (1)顶点为;
    故答案为;
    (2)对称轴,

    由已知可求,
    点关于对称点为,
    则关于对称的直线为,

    ①当时,,
    ,,
    当时,,



    当与不平行时,,



    综上所述;
    ②当,时,




    ∴有且只有一个与相似时,;
    故答案为;
    【点睛】
    本题考查二次函数的图象及性质,三角形的相似;熟练掌握二次函数的性质,三角形相似的判定与性质是解题的关键.
    【举一反三】
    (2018武汉中考)抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.
    (1)直接写出抛物线L的解析式;
    (2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;
    (3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.

    【答案】(1)y=﹣x2+2x+1;(2)-3;(3)当m=2﹣1时,点P的坐标为(0,)和(0,);当m=2时,点P的坐标为(0,1)和(0,2).
    【解析】
    【分析】(1)根据对称轴为直线x=1且抛物线过点A(0,1)利用待定系数法进行求解可即得;
    (2)根据直线y=kx﹣k+4=k(x﹣1)+4知直线所过定点G坐标为(1,4),从而得出BG=2,由S△BMN=S△BNG﹣S△BMG=BG•xN﹣BG•xM=1得出xN﹣xM=1,联立直线和抛物线解析式求得x=,根据xN﹣xM=1列出关于k的方程,解之可得;
    (3)设抛物线L1的解析式为y=﹣x2+2x+1+m,知C(0,1+m)、D(2,1+m)、F(1,0),再设P(0,t),分△PCD∽△POF和△PCD∽△POF两种情况,由对应边成比例得出关于t与m的方程,利用符合条件的点P恰有2个,结合方程的解的情况求解可得.
    【详解】(1)由题意知,解得:,
    ∴抛物线L的解析式为y=﹣x2+2x+1;
    (2)如图1,设M点的横坐标为xM,N点的横坐标为xN,

    ∵y=kx﹣k+4=k(x﹣1)+4,
    ∴当x=1时,y=4,即该直线所过定点G坐标为(1,4),
    ∵y=﹣x2+2x+1=﹣(x﹣1)2+2,
    ∴点B(1,2),
    则BG=2,
    ∵S△BMN=1,即S△BNG﹣S△BMG=BG•(xN﹣1)-BG•(xM-1)=1,
    ∴xN﹣xM=1,
    由得:x2+(k﹣2)x﹣k+3=0,
    解得:x==,
    则xN=、xM=,
    由xN﹣xM=1得=1,
    ∴k=±3,
    ∵k<0,
    ∴k=﹣3;
    (3)如图2,

    设抛物线L1的解析式为y=﹣x2+2x+1+m,
    ∴C(0,1+m)、D(2,1+m)、F(1,0),
    设P(0,t),
    (a)当△PCD∽△FOP时,,
    ∴,
    ∴t2﹣(1+m)t+2=0①;
    (b)当△PCD∽△POF时,,
    ∴,
    ∴t=(m+1)②;
    (Ⅰ)当方程①有两个相等实数根时,
    △=(1+m)2﹣8=0,
    解得:m=2﹣1(负值舍去),
    此时方程①有两个相等实数根t1=t2=,
    方程②有一个实数根t=,
    ∴m=2﹣1,
    此时点P的坐标为(0,)和(0,);
    (Ⅱ)当方程①有两个不相等的实数根时,
    把②代入①,得:(m+1)2﹣(m+1)+2=0,
    解得:m=2(负值舍去),
    此时,方程①有两个不相等的实数根t1=1、t2=2,
    方程②有一个实数根t=1,
    ∴m=2,此时点P的坐标为(0,1)和(0,2);
    综上,当m=2﹣1时,点P的坐标为(0,)和(0,);
    当m=2时,点P的坐标为(0,1)和(0,2).
    【新题训练】
    1.(2019·长沙市开福区青竹湖湘一外国语学校初三月考)如图1,已知抛物线;C1:y=﹣(x+2)(x﹣m)(m>0)与x轴交于点B、C(点B在点C的左侧),与y轴交于点E.

    (1)求点B、点C的坐标;
    (2)当△BCE的面积为6时,若点G的坐标为(0,b),在抛物线C1的对称轴上是否存在点H,使得△BGH的周长最小,若存在,则求点H的坐标(用含b的式子表示);若不存在,则请说明理由;
    (3)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE相似?若存在,求m的值;若不存在,请说明理由.
    【答案】(1)点B、C的坐标分别为:(﹣2,0)、(m,0);(2)存在,点H(1,b);(3)存在,m=2
    【详解】
    解:(1),令y=0,则x=﹣2或m,
    故点B、C的坐标分别为:(﹣2,0)、(m,0);
    (2)存在,理由:
    ,令x=0,则y=2,故点E(0,2),
    △BCE的面积为: ,解得:m=4,
    则抛物线的对称轴为: ,
    点B关于函数对称轴的对称点为点C(m,0),连接CE交对称轴于点H,则点H为所求,
    将点C、E的坐标代入一次函数表达式并解得:
    直线CE的表达式为: ,当x=1时, ,
    故点H(1,b);
    (3)∵OE=OB=2,故∠EBO=45°,

    过点F作FT⊥x轴于点F;
    ①当△BEC∽△BCF时,
    则BC2=BE•BF,∠FBO=EBO=45°,
    则直线BF的函数表达式为:y=﹣x﹣2,故点F(x,﹣x﹣2);
    将点F的坐标代入抛物线表达式得:
    解得:x=﹣2(舍去)或2m,
    故点F(2m,﹣2m﹣2),

    ∵BC2=BE•BF,
    则 解得: (舍去负值),

    ②当△BEC∽△FCB时,
    则BC2=BF•EC,∠CBF=∠ECO,
    则△BFT∽△COE,
    则 ,则点
    将点F的坐标代入抛物线表达式得:
    解得:x=﹣2(舍去)或m+2;
    则点
    BC2=BF•EC,则
    化简得:m3+4m2+4m=m3+4m2+4m+16,
    此方程无解;
    综上,m=2.
    2.(2020·浙江初三期末)边长为2的正方形在平面直角坐标系中的位置如图所示,点是边的中点,连接,点在第一象限,且,.以直线为对称轴的抛物线过,两点.

    (1)求抛物线的解析式;
    (2)点从点出发,沿射线每秒1个单位长度的速度运动,运动时间为秒.过点作于点,当为何值时,以点,,为顶点的三角形与相似?
    (3)点为直线上一动点,点为抛物线上一动点,是否存在点,,使得以点,,,为顶点的四边形是平行四边形?若存在,请直接写出满足条件的点的坐标;若不存在,请说明理由.
    【答案】(1);(2)或时,以点,,为顶点的三角形与相似;(3)存在,四边形是平行四边形时,,;四边形是平行四边形时,,;四边形是平行四边形时,,
    【详解】
    解:(1)过点作轴于点.

    ∵四边形是边长为2的正方形,是的中点,
    ∴,,.
    ∵,∴.
    ∵,∴.
    在和中,
    ∴,,.
    ∴点的坐标为.
    ∵抛物线的对称轴为直线即直线,∴可设抛物线的解析式为,
    将、点的坐标代入解析式,得,解得.
    ∴抛物线的解析式为;
    (2)①若,则,,
    ∴,∴四边形是矩形,
    ∴,∴;
    ②若,则,
    ∴.
    ∴.
    ∴,∴.
    ∵,∴,∴.
    ∵,
    ∴,,
    综上所述:或时,以点,,为顶点的三角形与相似:
    (3)存在,①若以DE为平行四边形的对角线,如图2,

    此时,N点就是抛物线的顶点(2,),
    由N、E两点坐标可求得直线NE的解析式为:y=x;
    ∵DM∥EN,
    ∴设DM的解析式为:y=x+b,
    将D(1,0)代入可求得b=−,
    ∴DM的解析式为:y=x−,
    令x=2,则y=,
    ∴M(2,);
    ②过点C作CM∥DE交抛物线对称轴于点M,连接ME,如图3,

    ∵CM∥DE,DE⊥CD,
    ∴CM⊥CD,
    ∵OC⊥CB,
    ∴∠OCD=∠BCM,
    在△OCD和△BCM中

    ∴△OCD≌△BCM(ASA),
    ∴CM=CD=DE,BM=OD=1,
    ∴CDEM是平行四边形,
    即N点与C占重合,
    ∴N(0,2),M(2,3);
    ③N点在抛物线对称轴右侧,MN∥DE,如图4,

    作NG⊥BA于点G,延长DM交BN于点H,
    ∵MNED是平行四边形,
    ∴∠MDE=MNE,∠ENH=∠DHB,
    ∵BN∥DF,
    ∴∠ADH=∠DHB=∠ENH,
    ∴∠MNB=∠EDF,
    在△BMN和△FED中

    ∴△BMN≌△FED(AAS),
    ∴BM=EF=1,
    BN=DF=2,
    ∴M(2,1),N(4,2);
    综上所述,
    四边形是平行四边形时,,;
    四边形是平行四边形时,,;
    四边形是平行四边形时,,.
    3.(2020·长沙市长郡双语实验中学初三开学考试)如图,抛物线y=ax2﹣2ax+c的图象经过点C(0,﹣2),顶点D的坐标为(1,﹣),与x轴交于A、B两点.

    (1)求抛物线的解析式.
    (2)连接AC,E为直线AC上一点,当△AOC∽△AEB时,求点E的坐标和的值.
    (3)点C关于x轴的对称点为H,当FC+BF取最小值时,在抛物线的对称轴上是否存在点Q,使△QHF是直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
    【答案】(1);(2)E(﹣,﹣);;(3)(1,)或(1,)或Q(1,2)或Q(1,﹣).
    【详解】
    (1)由题可列方程组:,解得:
    ∴抛物线解析式为:y=x2﹣x﹣2;
    (2)由题意和勾股定理得,∠AOC=90°,AC=,AB=4,

    设直线AC的解析式为:y=kx+b,则,
    解得:,
    ∴直线AC的解析式为:y=﹣2x﹣2;
    当△AOC∽△AEB时=()2=()2=,
    ∵S△AOC=1,
    ∴S△AEB=,
    ∴AB×|yE|=,AB=4,则yE=﹣,
    则点E(﹣,﹣);
    由△AOC∽△AEB得:
    ∴;
    (3)如图2,连接BF,过点F作FG⊥AC于G,

    则FG=CFsin∠FCG=CF,
    ∴CF+BF=GF+BF≥BE,
    当折线段BFG与BE重合时,取得最小值,
    由(2)可知∠ABE=∠ACO
    |y|=OBtan∠ABE=OBtan∠ACO=3×=,
    ∴当y=﹣时,即点F(0,﹣),CF+BF有最小值;
    ①当点Q为直角顶点时(如图3) F(0,﹣),

    ∵C(0,﹣2)
    ∴H(0,2)设Q(1,m),过点Q作QM⊥y轴于点M.
    则Rt△QHM∽Rt△FQM∴QM2=HM•FM,
    ∴12=(2﹣m)(m+),
    解得:m=,则点Q(1,)或(1,)
    当点H为直角顶点时:点H(0,2),则点Q(1,2);当点F为直角顶点时:
    同理可得:点Q(1,﹣);
    综上,点Q的坐标为:(1,)或(1,)或Q(1,2)或Q(1,﹣).
    4.(2019·贵州初三)如图,已知抛物线y=x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.
    (1)求抛物线的解析式;
    (2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP的面积最大时,求点P的坐标;
    (3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.

    【答案】(1) 抛物线的解析式为y=x2-2x+1,(2) 四边形AECP的面积的最大值是,点P(,﹣);(3) Q(4,1)或(-3,1).
    【详解】
    解:(1)将A(0,1),B(9,10)代入函数解析式得:
    ×81+9b+c=10,c=1,解得b=−2,c=1,
    所以抛物线的解析式y=x2−2x+1;
    (2)∵AC∥x轴,A(0,1),
    ∴x2−2x+1=1,解得x1=6,x2=0(舍),即C点坐标为(6,1),
    ∵点A(0,1),点B(9,10),
    ∴直线AB的解析式为y=x+1,设P(m,m2−2m+1),∴E(m,m+1),
    ∴PE=m+1−(m2−2m+1)=−m2+3m.
    ∵AC⊥PE,AC=6,
    ∴S四边形AECP=S△AEC+S△APC=AC⋅EF+AC⋅PF
    =AC⋅(EF+PF)=AC⋅EP
    =×6(−m2+3m)=−m2+9m.
    ∵0

    相关试卷

    中考数学二轮复习解答题培优专题03 相似三角形的存在性问题(含解析):

    这是一份中考数学二轮复习解答题培优专题03 相似三角形的存在性问题(含解析),共57页。

    中考数学二轮专项培优专题03 相似三角形的存在性问题(教师版):

    这是一份中考数学二轮专项培优专题03 相似三角形的存在性问题(教师版),共57页。

    【全套】中考数学复习专题(知识梳理+含答案)专题03 相似三角形的存在性问题(解析版):

    这是一份【全套】中考数学复习专题(知识梳理+含答案)专题03 相似三角形的存在性问题(解析版),共57页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map