初中数学中考复习 专题03 不等式与不等式组(原卷版)
展开决胜2021中考数学压轴题全揭秘精品
专题03 不等式与不等式组
【考点1】不等式的基本性质
【例1】(2020·江苏宿迁·中考真题)若a>b,则下列等式一定成立的是( )
A.a>b+2 B.a+1>b+1 C.﹣a>﹣b D.|a|>|b|
【变式1-1】若,下列不等式不一定成立的是
A. B. C. D.
【变式1-2】(2020·贵州贵阳·中考真题)已知,下列式子不一定成立的是( )
A. B. C. D.
【考点2】解一元一次不等式(组)
【例2】(2020·江苏淮安·中考真题)解不等式.
解:去分母,得.
……
(1)请完成上述解不等式的余下步骤:
(2)解题回顾:本题“去分母”这一步的变形依据是 (填“A”或“B”)
A.不等式两边都乘(或除以)同一个正数,不等号的方向不变;
B.不等式两边都乘(或除以)同一个负数,不等号的方向改变.
【变式2-1】(2019•呼和浩特)若不等式的解集中的每一个值,都能使关于的不等式成立,则的取值范围是
A. B. C. D.
【变式2-2】(2020·四川绵阳·中考真题)若不等式>﹣x﹣的解都能使不等式(m﹣6)x<2m+1成立,则实数m的取值范围是_______.
【变式2-3】(2020·贵州黔西·中考真题)不等式组的解集为________.
【变式2-4】(2020·台儿庄)若关于、的二元一次方程组的解满足,则的取值范围是____.
【考点3】不等式的含参及特殊解问题
【例3】(2020·黑龙江鹤岗·中考真题)若关于的一元一次不等式组的解是,则的取值范围是_______.
【变式3-1】(2020·山东滨州·中考真题)若关于x的不等式组无解,则a的取值范围为________.
【变式3-2】(2020·四川内江·中考真题)若数a使关于x的分式方程的解为非负数,且使关于y的不等式组的解集为,则符合条件的所有整数a的积为_____________
【变式3-3】(2020·黑龙江鸡西·中考真题)若关于的一元一次不等式组有个整数解,则的取值范围是______.
【考点4】一元一次不等式的应用问题
【例4】(2011·江苏南通·中考真题)某商店以6元/千克的价格购进某种干果1140千克,并对其进行筛选分成甲级干果与乙级干果后同时开始销售.这批干果销售结束后,店主从销售统计中发出:甲级干果与乙级干果在销售过程中每天都有销量,且在同一天卖完;甲级干果从开始销售至销售的第x天的总销量y1(千克)与x的关系为y1=﹣x2+40x;乙级干果从开始销售至销售的第t天的总销量y2(千克)与t的关系为y2=at2+bt,且乙级干果的前三天的销售量的情况见下表:
t | 1 | 2 | 3 |
y2 | 21 | 44 | 69 |
(1)求a、b的值;
(2)若甲级干果与乙级干果分别以8元/千克的6元/千克的零售价出售,则卖完这批干果获得的毛利润是多少元?
(3)问从第几天起乙级干果每天的销量比甲级干果每天的销量至少多6千克?
(说明:毛利润=销售总金额﹣进货总金额.这批干果进货至卖完的过程中的损耗忽略不计)
【变式4-1】(2020·广西中考真题)某学校为丰富同学们的课余生活,购买了一批数量相等的象棋和围棋供兴趣小组使用,其中购买象棋用了420元,购买围棋用了756元,已知每副围棋比每副象棋贵8元.
(1)求每副围棋和象棋各是多少元?
(2)若该校决定再次购买同种围棋和象棋共40副,且再次购买的费用不超过600元,则该校最多可再购买多少副围棋?
【变式4-2】8.(2020·宁夏中考真题)在综合与实践活动中,活动小组的同学看到网上购鞋的鞋号(为正整数)与脚长(毫米)的对应关系如表1:
鞋号(正整数) | 22 | 23 | 24 | 25 | 26 | 27 | …… |
脚长(毫米) | …… |
为了方便对问题的研究,活动小组将表1中的数据进行了编号,并对脚长的数据定义为如表2:
序号n | 1 | 2 | 3 | 4 | 5 | 6 | …… |
鞋号 | 22 | 23 | 24 | 25 | 26 | 27 | …… |
脚长 | …… | ||||||
脚长 | 160 | 165 | 170 | 175 | 180 | 185 | …… |
定义:对于任意正整数m、n,其中.若,则.
如:表示,即.
(1)通过观察表2,猜想出与序号n之间的关系式,与序号n之间的关系式;
(2)用含的代数式表示;计算鞋号为42的鞋适合的脚长范围;
(3)若脚长为271毫米,那么应购鞋的鞋号为多大?
【考点5】不等式组的应用问题
【例5】(2020·湖南郴州·中考真题)为支援抗疫前线,某省红十字会采购甲、乙两种抗疫物资共吨,甲物资单价为万元/吨,乙物资单价为万元吨,采购两种物资共花费万元.
(1)求甲、乙两种物资各采购了多少吨?
(2)现在计划安排两种不同规格的卡车共辆来运输这批物资.甲物资吨和乙物资吨可装满一辆型卡车;甲物资吨和乙物资吨可装满一辆型卡车.按此要求安排两型卡车的数量,请问有哪几种运输方案?
【变式5-1】(2020·四川雅安·中考真题)某班级为践行“绿水青山就是金山银山”的理念,开展植树活动.如果每人种3棵,则剩86棵;如果每人种5棵,则最后一人有树种但不足3棵.请问该班有多少学生?本次一共种植多少棵树?(请用一元一次不等式组解答)
【变式5-2】(2020·湖南湘潭·中考真题)习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”.某校为提高学生的阅读品味,现决定购买获得第十届矛盾文学奖的《北上》(徐则臣著)和《牵风记》(徐怀中著)两种书共50本.已知购买2本《北上》和1本《牵风记》需100元;购买6本《北上》与购买7本《牵风记》的价格相同.
(1)求这两种书的单价;
(2)若购买《北上》的数量不少于所购买《牵风记》数量的一半,且购买两种书的总价不超过1600元.请问有哪几种购买方案?哪种购买方案的费用最低?最低费用为多少元?
1.(2020·云南昆明·中考真题)不等式组,的解集在以下数轴表示中正确的是( )
A.
B.
C.
D.
2.(2020·黑龙江鹤岗·中考真题)已知关于的分式方程的解为非正数,则的取值范围是( )
A. B. C. D.
3.(2020·山东博山·初三二模)关于的不等式只有2个正整数解,则的取值范围为( )
A. B. C. D.
4.(2020·浙江杭州·中考真题)若a>b,则( )
A.a﹣1≥b B.b+1≥a C.a+1>b﹣1 D.a﹣1>b+1
5.(2020·四川攀枝花·中考真题)世纪公园的门票是每人5元,一次购门票满40张,每张门票可少1元.若少于40人时,一个团队至少要有________人进公园,买40张门反而合算.
6.(2020·辽宁沈阳·初三一模)不等式组的解集是_____.
7.(2019·广西玉林·中考真题)设,则,则m的取值范围是_____.
8.(2020·宁夏中考真题)《西游记》、《三国演义》、《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著某兴趣小组阅读四大名著的人数,同时满足以下三个条件:
(1)阅读过《西游记》的人数多于阅读过《水浒传》的人数;
(2)阅读过《水浒传》的人数多于阅读过《三国演义》的人数;
(3)阅读过《三国演义》的人数的2倍多于阅读过《西游记》的人数.
若阅读过《三国演义》的人数为4,则阅读过《水浒传》的人数的最大值为_____.
9.(2020·四川遂宁·中考真题)若关于x的不等式组有且只有三个整数解,则m的取值范围是______.
10.(2020·山东德城·初三二模)对于三个数a,b,c,用M{a,b,c}表示这三个数的中位数,用max{a,b,c}表示这三个数中最大的数.例如:M{–2,–1,0}=–1;max{–2,–1,0}=0,max{–2,–1,a}=,根据以上材料,解决下列问题:若max{3,5–3x,2x–6}=M{1,5,3},则x的取值范围为______.
11.(2020·山东沂源·)关于x的不等式组有2个整数解,则a的取值范围是____________.
12.(2020·山东岱岳·初三一模)若关于x的不等式组的所有整数解的和是﹣9,则m的取值范围是__________.
13.(2020·四川绵阳·中考真题)我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共100亩,根据市场调查,甲、乙两种火龙果每亩的种植成本分别为0.9万元、1.1万元,每亩的销售额分别为2万元、2.5万元,如果要求种植成本不少于98万元,但不超过100万元,且所有火龙果能全部售出,则该县在此项目中获得的最大利润是_____万元.(利润=销售额﹣种植成本)
14.(2020·山东威海·中考真题)解不等式组,并把解集在数轴上表示出来
15.(2020·内蒙古通辽·中考真题)用※定义一种新运算:对于任意实数m和n,规定,如:.
(1)求;
(2)若,求m的取值范围,并在所给的数轴上表示出解集.
16.(2020·湖南张家界·中考真题)阅读下面的材料:
对于实数,我们定义符号的意义为:当时,;当时,,如:.
根据上面的材料回答下列问题:
(1)______;
(2)当时,求x的取值范围.
17.(2019·青海中考真题)某市为了提升菜篮子工程质量,计划用大、中型车辆共辆调拨不超过吨蔬菜和吨肉制品补充当地市场.已知一辆大型车可运蔬菜吨和肉制品吨;一辆中型车可运蔬菜吨和肉制品吨.
(1)符合题意的运输方案有几种?请你帮助设计出来;
(2)若一辆大型车的运费是元,一辆中型车的运费为元,试说明中哪种运输方案费用最低?最低费用是多少元?
18.(2020·黑龙江穆棱·朝鲜族学校中考真题)某商场准备购进A、B两种型号电脑,每台A型号电脑进价比每台B型号电脑多500元,用40 000元购进A型号电脑的数量与用30 000元购进B型号电脑的数量相同,请解答下列问题:
(1)A,B型号电脑每台进价各是多少元?
(2)若每台A型号电脑售价为2 500元,每台B型号电脑售价为1 800元,商场决定同时购进A,B两种型号电脑20台,且全部售出,请写出所获的利润y(单位:元)与A型号电脑x(单位:台)的函数关系式,若商场用不超过36 000元购进A,B两种型号电脑,A型号电脑至少购进10台,则有几种购买方案?
(3)在(2)问的条件下,将不超过所获得的最大利润再次购买A,B两种型号电脑捐赠给某个福利院,请直接写出捐赠A,B型号电脑总数最多是多少台.
19.(2020·湖南邵阳·中考真题)2020年5月,全国“两会”召开以后,应势复苏的“地摊经济”带来了市场新活力,小丹准备购进A、B两种类型的便携式风扇到地摊一条街出售.已知2台A型风扇和5台B型风扇进价共100元,3台A型风扇和2台B型风扇进价共62元.
(1)求A型风扇、B型风扇进货的单价各是多少元?
(2)小丹准备购进这两种风扇共100台,根据市场调查发现,A型风扇销售情况比B型风扇好,小丹准备多购进A型风扇,但数量不超过B型风扇数量的3倍,购进A、B两种风扇的总金额不超过1170元.根据以上信息,小丹共有哪些进货方案?
20.(2020·山东济宁·中考真题)为加快复工复产,某企业需运输批物资.据调查得知,2辆大货车与3辆小货车一次可以运输600箱;5辆大货车与6辆小货车一次可以运输1350箱.
(1)求1辆大货车和1辆小货车一次可以分别运输多少箱物资;
(2)计划用两种货车共12辆运输这批物资,每辆大货车一次需费用5 000元,每辆小货车一次需费用3000元.若运输物资不少于1500箱,且总费用小于54000元,请你列出所有运输方案,并指出哪种方案所需费用最少,最少费用是多少?
初中数学中考复习 专题09 不等式与不等式组(原卷版): 这是一份初中数学中考复习 专题09 不等式与不等式组(原卷版),共8页。试卷主要包含了不等式的解,不等式的解集,不等式的性质等内容,欢迎下载使用。
初中数学中考复习 专题03 图形的变化(原卷版): 这是一份初中数学中考复习 专题03 图形的变化(原卷版),共5页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中数学中考复习 专题03 不等式与不等式组(解析版): 这是一份初中数学中考复习 专题03 不等式与不等式组(解析版),共33页。