初中数学中考复习 专题08 二次函数的图象性质与应用问题(原卷版)
展开【典例分析】
【考点1】二次函数的图象与性质
【例1】(2019·四川中考真题)二次函数的图象如图所示,对称轴为直线,下列结论不正确的是( )
A.
B.当时,顶点的坐标为
C.当时,
D.当时,y随x的增大而增大
【变式1-1】
(2019·重庆中考真题)抛物线的对称轴是( )
A.直线B.直线C.直线D.直线
【变式1-2】(2019·浙江中考真题)已知抛物线与轴有两个不同的交点.
(1)求的取值范围;
(2)若抛物线经过点和点,试比较与的大小,并说明理由.
【考点2】抛物线的平移与解析式的确定
【例2-1】(2019·山东中考真题)将抛物线向上平移两个单位长度,再向右平移一个单位长度后,得到的抛物线解析式是( )
A.B.C.D.
【例2-2】(2019·山西中考真题)北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点,拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为( )
A.B.C.D.
【变式2-1】(2019·西藏中考真题)把函数的图象,经过怎样的平移变换以后,可以得到函数的图象( )
A.向左平移个单位,再向下平移个单位
B.向左平移个单位,再向上平移个单位
C.向右平移个单位,再向上平移个单位
D.向右平移个单位,再向下平移个单位
【变式2-2】(2019·江苏中考真题)已知二次函数的图象经过点,顶点为将该图象向右平移,当它再次经过点时,所得抛物线的函数表达式为__.
【变式2-3】(2019·浙江中考真题)在平面直角坐标系中,抛物线经过变换后得到抛物线,则这个变换可以是( )
A.向左平移2个单位B.向右平移2个单位
C.向左平移8个单位D.向右平移8个单位
【变式2-4】(2019·四川中考真题)将抛物线向左平移_______个单位后经过点.
【考点3】二次函数的图象与字母系数的关系
【例3】(2019·辽宁中考真题)已知二次函数的图象如图所示,现给出下列结论:①;②;③;④.其中正确结论的个数是( )
A.1B.2C.3D.4
【变式3-1】(2019·浙江中考真题)小飞研究二次函数y=-(x-m)2-m+1(m为常数)性质时如下结论:①这个函数图象的顶点始终在直线y=-x+1上;②存在一个m的值,使得函数图象的顶点与轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1
【变式3-2】(2019·广西中考真题)已知抛物线的对称轴是直线,其部分图象如图所示,下列说法中:①;②;③;④当时,,正确的是_____(填写序号).
【考点4】二次函数的应用
【例4】(2019·辽宁中考真题)某商场销售一种商品的进价为每件30元,销售过程中发现月销售量y(件)与销售单价x(元)之间的关系如图所示.
(1)根据图象直接写出y与x之间的函数关系式.
(2)设这种商品月利润为W(元),求W与x之间的函数关系式.
(3)这种商品的销售单价定为多少元时,月利润最大?最大月利润是多少?
【变式4-1】(2019·山东中考真题)从地面竖直向上抛出一小球,小球的高度(单位:)与小球运动时间(单位:)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度时,.其中正确的是( )
A.①④B.①②C.②③④D.②③
【变式4-3】(2019·江苏中考真题)如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC与CD总长为12m,则该梯形储料场ABCD的最大面积是( )
A.18m2B.m2C.m2D.m2
【变式4-3】(2019·湖南中考真题)某政府工作报告中强调,2019年着重推进乡村振兴战略,做优做响湘莲等特色农产品品牌.小亮调查了一家湘潭特产店两种湘莲礼盒一个月的销售情况,A种湘莲礼盒进价72元/盒,售价120元/盒,B种湘莲礼盒进价40元/盒,售价80元/盒,这两种湘莲礼盒这个月平均每天的销售总额为2800元,平均每天的总利润为1280元.
(1)求该店平均每天销售这两种湘莲礼盒各多少盒?
(2)小亮调査发现,种湘莲礼盒售价每降3元可多卖1盒.若种湘莲礼盒的售价和销量不变,当种湘莲礼盒降价多少元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是多少元?
【达标训练】
1.(2019·广西中考真题)如图,抛物线的对称轴为直线,则下列结论中,错误的是( )
A.B.C.D.
2.(2019·内蒙古中考真题)二次函数与一次函数在同一坐标系中的大致图象可能是( )
A.B.
C.D.
3.(2019·浙江中考真题)二次函数图象的顶点坐标是( )
A.B.C.D.
4.(2019·黑龙江中考真题)将抛物线向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( ).
A.;B.;
C.;D..
5.(2019·福建中考真题)若二次函数y=|a|x2+bx+c的图象经过A(m,n)、B(0,y1)、C(3-m,n)、D(, y2)、E(2,y3),则y1、y2、y3的大小关系是( ).
A.y1< y2< y3B.y1 < y3< y2C.y3< y2< y1D.y2< y3< y1
6.(2019·辽宁中考真题)已知二次函数的图象如图所示,现给出下列结论:①;②;③;④.其中正确结论的个数是( )
A.1B.2C.3D.4
7.(2019·四川中考真题)二次函数的部分图象如图所示,有以下结论:①;②;③;④,其中错误结论的个数是( )
A.1B.2C.3D.4
8.(2019·广东中考真题)已知的图象如图,则和的图象为( )
A.B.C.D.
9.(2019·重庆中考真题)抛物线的对称轴是( )
A.直线B.直线C.直线D.直线
10.(2019·浙江中考真题)已知是非零实数,,在同一平面直角坐标系中,二次函数与一次函数的大致图象不可能是( )
A.B.
C.D.
11.(2019·四川中考真题)如图,二次函数的图象经过点,,下列说法正确的是( )
A.B.
C.D.图象的对称轴是直线
12.(2019·浙江中考真题)在平面直角坐标系中,已知,设函数的图像与x轴有M个交点,函数的图像与x轴有N个交点,则( )
A.或B.或
C.或D.或
13.(2019·四川中考真题)已知二次函数(其中是自变量)的图象与轴没有公共点,且当时,随的增大而减小,则实数的取值范围是( )
A.B.C.D.
14.(2019·四川中考真题)已知抛物线与y轴交于点A,与直线(k为任意实数)相交于B,C两点,则下列结论不正确的是( )
A.存在实数k,使得为等腰三角形
B.存在实数k,使得的内角中有两角分别为30°和60°
C.任意实数k,使得都为直角三角形
D.存在实数k,使得为等边三角形
15.(2019·江苏中考真题)如图是王阿姨晚饭后步行的路程s(单位:m)与时间t(单位:min)的函数图象,其中曲线段AB是以B为顶点的抛物线一部分.下列说法不正确的是( )
A.25min~50min,王阿姨步行的路程为800m
B.线段CD的函数解析式为
C.5min~20min,王阿姨步行速度由慢到快
D.曲线段AB的函数解析式为
16.(2019·湖南中考真题)如图,在直角三角形中,,是的中点,过点作和的垂线,垂足分别为点和点,四边形沿着方向匀速运动,点与点重合时停止运动,设运动时间为,运动过程中四边形与的重叠部分面积为.则关于的函数图象大致为( )
A.B.
C.D.
17.(2019·湖北中考真题)如图,若被击打的小球飞行高度(单位:)与飞行时间(单位:)之间具有的关系为,则小球从飞出到落地所用的时间为_____.
18.(2019·黑龙江中考真题)二次函数的最大值是__________.
19.(2019·甘肃中考真题)二次函数的图象如图所示,若,.则、的大小关系为_____.(填“”、“”或“”)
20.(2019·四川中考真题)如图,在平面直角坐标系中,矩形的顶点O落在坐标原点,点A、点C分别位于x轴,y轴的正半轴,G为线段上一点,将沿翻折,O点恰好落在对角线上的点P处,反比例函数经过点B.二次函数的图象经过、G、A三点,则该二次函数的解析式为_______.(填一般式)
21.(2019·湖北中考真题)二次函数的最大值是__________.
22.(2019·浙江中考真题)某函数满足当自变量时,函数值;当自变量时,函数值,写出一个满足条件的函数表达式_____.
23.(2019·山东中考真题)如图,直线与抛物线交于,两点,点是轴上的一个动点,当的周长最小时,_______.
24.(2019·吉林中考真题)如图,在平面直角坐标系中,抛物线与轴交于点,过点作轴的平行线交抛物线于点.为抛物线的顶点.若直线交直线于点,且为线段的中点,则的值为_____.
25.(2019·湖南中考真题)规定:如果一个四边形有一组对边平行,一组邻边相等,那么称此四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M、N的坐标分别为P是二次函数的图象上在第一象限内的任意一点,PQ垂直直线于点Q,则四边形PMNQ是广义菱形.其中正确的是_____.(填序号)
26.(2019·四川中考真题)如图,点是双曲线:()上的一点,过点作轴的垂线交直线:于点,连结,.当点在曲线上运动,且点在的上方时,△面积的最大值是______.
27.(2019·江苏中考真题)某个函数具有性质:当>0时,随的增大而增大,这个函数的表达式可以是____(只要写出一个符合题意的答案即可)
28.(2019·四川中考真题)在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间的关系为,由此可知该生此次实心球训练的成绩为_______米.
29.(2019·湖北中考真题)“互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降1元,则每月可多销售5条.设每条裤子的售价为元(为正整数),每月的销售量为条.
(1)直接写出与的函数关系式;
(2)设该网店每月获得的利润为元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?
(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生.为了保证捐款后每月利润不低于4220元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?
30.(2019·湖北中考真题)在平面直角坐标系中,已知抛物线和直线l:y=kx+b,点A(-3,-3),B(1,-1)均在直线l上.
(1)若抛物线C与直线l有交点,求a的取值范围;
(2)当a=-1,二次函数的自变量x满足m≤x≤m+2时,函数y的最大值为-4,求m的值;
(3)若抛物线C与线段AB有两个不同的交点,请直接写出a的取值范围.
31.(2019·浙江中考真题)有一块形状如图的五边形余料,,,,,.要在这块余料中截取一块矩形材料,其中一边在上,并使所截矩形的面积尽可能大.
(1)若所截矩形材料的一条边是或,求矩形材料的面积;
(2)能否截出比(1)中面积更大的矩形材料?如果能,求出这些矩形材料面积的最大值,如果不能,请说明理由.
32.(2019·浙江中考真题)已知函数(,为常数)的图象经过点.
(1)求,满足的关系式;
(2)设该函数图象的顶点坐标是,当的值变化时,求关于的函数解析式;
(3)若该函数的图象不经过第三象限,当时,函数的最大值与最小值之差为16,求的值.
33.(2019·浙江中考真题)如图,已知二次函数的图象经过点.
(1)求的值和图象的顶点坐标。
(2)点在该二次函数图象上.
①当时,求的值;
②若到轴的距离小于2,请根据图象直接写出的取值范围.
34.(2019·江苏中考真题)超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加元,每天售出件.
(1)请写出与之间的函数表达式;
(2)当为多少时,超市每天销售这种玩具可获利润2250元?
(3)设超市每天销售这种玩具可获利元,当为多少时最大,最大值是多少?
35.(2019·辽宁中考真题)2018年非洲猪瘟疫情暴发后,专家预测,2019年我市猪肉售价将逐月上涨,每千克猪肉的售价y1(元)与月份x(1≤x≤12,且x为整数)之间满足一次函数关系,如下表所示.每千克猪肉的成本y2(元)与月份x(1≤x≤12,且x为整数)之间满足二次函数关系,且3月份每千克猪肉的成本全年最低,为9元,如图所示.
(1)求y1与x之间的函数关系式.
(2)求y2与x之间的函数关系式.
(3)设销售每千克猪肉所获得的利润为w(元),求w与x之间的函数关系式,哪个月份销售每千克猪肉所第获得的利润最大?最大利润是多少元?
36.(2019·辽宁中考真题)某网店销售一种儿童玩具,进价为每件30元,物价部门规定每件儿童玩具的销售利润不高于进价的.在销售过程中发现,这种儿童玩具每天的销售量(件与销售单价(元满足一次函数关系.当销售单价为35元时,每天的销售量为350件;当销售单价为40元时,每天的销售量为300件.
(1)求与之间的函数关系式.
(2)当销售单价为多少时,该网店销售这种儿童玩具每天获得的利润最大,最大利润是多少?
37.(2019·甘肃中考真题)一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量(件与销售价(元/件)之间的函数关系如图所示.
(1)求与之间的函数关系式,并写出自变量的取值范围;
(2)求每天的销售利润W(元与销售价(元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?
38.(2019·辽宁中考真题)小李在景区销售一种旅游纪念品,已知每件进价为6元,当销售单价定为8元时,每天可以销售200件.市场调查反映:销售单价每提高1元,日销量将会减少10件,物价部门规定:销售单价不能超过12元,设该纪念品的销售单价为x(元),日销量为y(件),日销售利润为w(元).
(1)求y与x的函数关系式.
(2)要使日销售利润为720元,销售单价应定为多少元?
(3)求日销售利润w(元)与销售单价x(元)的函数关系式,当x为何值时,日销售利润最大,并求出最大利润.
39.(2019·山东中考真题)某商店购进一批成本为每件 30 元的商品,经调查发现,该商品每天的销售量 y(件)与销售单价 x(元)之间满足一次函数关系,其图象如图所示.
(1)求该商品每天的销售量 y 与销售单价 x 之间的函数关系式;
(2)若商店按单价不低于成本价,且不高于 50 元销售,则销售单价定为多少,才能使销售该商品每天获得的利润 w(元)最大?最大利润是多少?
(3)若商店要使销售该商品每天获得的利润不低于 800 元,则每天的销售量最少应为多少件?
月份x
…
3
4
5
6
…
售价y1/元
…
12
14
16
18
…
初中数学中考复习 专题六 函数的实际应用问题(原卷版): 这是一份初中数学中考复习 专题六 函数的实际应用问题(原卷版),共3页。试卷主要包含了某商店有两种优惠活动,如图所示等内容,欢迎下载使用。
初中数学中考复习 专题08 圆-2020中考数学(原卷版): 这是一份初中数学中考复习 专题08 圆-2020中考数学(原卷版),共4页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中数学中考复习 专题08 分式方程及其应用(原卷版): 这是一份初中数学中考复习 专题08 分式方程及其应用(原卷版),共4页。试卷主要包含了分式方程的定义,解分式方程的一般方法等内容,欢迎下载使用。