所属成套资源:【精讲精练】2022-2023数学冀教版新中考考点梳理
2022-2023 数学冀教版新中考精讲精练 考点31 统计与概率
展开这是一份2022-2023 数学冀教版新中考精讲精练 考点31 统计与概率,文件包含2022-2023数学冀教版新中考精讲精练考点31统计与概率解析版docx、2022-2023数学冀教版新中考精讲精练考点31统计与概率原卷版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。
考点31 统计与概率
考点总结
知识点一 数据的收集与整理
统计调查的一般步骤:
1、 明确问题 2、确定对象 3、选择合适的调查方法和形式
4、展开调查 5、统计并整理调查结果 6、分析调查结果并得出结论。
常见的数据收集方法:问卷调查、实地调查、媒体调查等。
数据收集的方式:全面调查和抽样调查。
全面调查:为特定的目的对全部考察对象进行的调查,叫做全面调查。全面调查有时也叫普查(如:人口普查)。
全面调查的优缺点:全面调查收集到的数据全面、准确,但一般花费多、耗时长,而且某些调查不宜用全面调查。
抽样调查:抽取一部分对象进行调查,根据调查数据推断全体对象的情况叫抽样调查。
所要考察的全体对象叫总体,组成总体的每一个考察对象叫个体,被抽取的那部分个体组成总体的一个样本,样本中个体的数目叫这个样本的容量(样本容量没有单位)。
抽样调查的优缺点:抽样调查具有花费少、省时的特点,但抽取的样本是否具有代表性,直接关系到对总体估计的准确程度。
抽样调查的方式:民意调查法、实地调查法、媒体调查法等。
【使用抽象调查时的注意事项】
1) 选取的样本有代表性;
2) 选取的样本有足够的多;
3) 选取样本时,要避免遗漏总体中的某一部分。
知识点二 数据的描述
频数概念:某类数据出现的次数称为这类数据的频数,各对象的频数之和等于数据总数。
频率概念:频数与总次数的比值称为这类数据的频率,即频率=。各对象的频率之和等于1.
组数和组距:在统计数据时,把数据进行适当分组,把分成组的个数称为组数,每一组两个端点的差叫做组距。
条形统计图:
特点:①能清楚地表示出每个项目中的具体数目;②易于比较数目之间的差别。③较简单,易绘制。
缺点:对于条形统计图,人们习惯于由条形柱的高度看相应的数据,即条形柱的高度与相应的数据成正比,若条形柱的高度与数据不成正比,就容易给人造成错觉。
画条形统计图方法:
1)根据图纸的大小,画出两条互相垂直的射线;
2)在水平射线上,适当分配条形的位置,确定直条的宽度和间隔;
3)在与水平射线垂直的射线上,根据数据大小的具体情况,确定单位长度表示多少;
4)按照数据大小,画出长短不同的直条,并注明数量。
扇形统计图:
特点:①用扇形的面积表示部分在总体中所占的百分比;②易于显示每组数据相对于总数的大小。
缺点:在两个扇形统计图中,若一个统计图中的某一个量所占的百分比比另一个统计图中的某个量所占的百分比多,这样容易造成第一个统计量比第二个统计量大的错误理解。
画扇形统计图方法:
1)根据有关数据先算出各部分在总体中所占得百分比(百分数=100%),在计算各部分的圆心角的度数()各部分扇形圆心角的度数=部分占总体百分比360°;
2)按比例取适当的半径画圆;
3)按求得的扇形圆心角的度数用量角器在圆内量出各个扇形的圆心角的度数;
4)在各扇形内写上相应的名称及百分数,并用不同的标记把各扇形区分出来。
折现统计图:
特点:①能清楚的反映事物的变化情况;②显示数据的变化趋势。
缺点:在折线图中,若横坐标被压缩,纵坐标被放大,此时的折线统计图中的统计量变化量变化明显,
反之,统计量变化缓慢。
频数分布直方图:
概念:以小长方形的面积来反映数据落在各个小组内的频数的大小。小长方形的高是频数与组距的比值 。
特点:直观显示各组频数的分布情况,易于显示各组之间频数的差别。
画频数直方图的一般步骤:
1) 计算数极差(最大值与最小值的差);
2)确定组距和组数;(分组时要遵循:不空、不重、不漏的原则)
3)决定分点;
4)列频数分布表;频数:落在个小组内的数据的个数。
5)画频数直方图 。
画频率分布折线图一般步骤:
1)计算准确,确定组距、组数,并将数据分组;
2)列出频数分布表,并确定组中值;
3)以组中值为横坐标,频数为纵坐标,根据组中值所在的组的频数在坐标系中描点,依次用线段把它们连成折线,(画频数分布折线图,并不一定要先画出频数分布直方图)。
4)画频数分布折线图时,在两侧各加一个虚设的附加组,这两个组都是零频数,所以不会对统计量造成影响,它的作用是使折线与横轴组成封闭折线,给进一步的研究带来方便。
知识点三 数据的集中趋势
算术平均数:简称平均数,记作“”,读作“x拔”。
公式:平均数==
【注意】分析平均数时,容易被数据的极值影响,导致错误的判断。
加权平均数概念:若个数,,…,的权分别是,,…,,则,叫做这个数的加权平均数.
【注意】若各数据权重相同,则算术平均数等于加权平均数。
中位数的概念:将一组数据由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这个数据的中位数,如果数据的个数是偶数,则中间两个数的平均数就是这组数据的中位数。
确定中位数的一般步骤:
第1步:排序,由大到小或由小到大。
第2步:确定是奇个数据()或偶个数据()。
第3步:如果是奇个数据,中间的数据就是中位数。如果是偶数,中位数是中间两个数据的平均数。
众数的概念:一组数据中出现次数最多的数据就是这组数据的众数。
【注意】如果一组数据中有两个数据的频数一样且都是最大,那么这两个数据都是这组数据的众数,所以一组数据中众数的个数可能不唯一。
众数的意义:当一组数据有较多的重复数据时,众数往往能更好地反映其集中的趋势。
平均数、中位数、众数的区别:
1、平均数的计算要用到所有的数据,它能够充分利用数据提供的信息,在现实生活中较为常用.但它受极端值的影响较大。
2、 当一组数据中某些数据多次重复出现时,众数往往是人们关心的一个量,众数不受极端值的影响,这是它的一个优势。但当各个数据的重复次数大致相等时,众数往往没有意义。
3.中位数只需很少的计算,不受极端值的影响,这在有些情况下是一个优点。
知识点四 数据的波动
方差的概念:在一组数据,,…,中,各个数据与平均数的差的平方的平均数叫做这组数据的方差,记作.计算公式是:
求一组数据方差的步骤:先平均、再做差、然后平方、最后再求平均数。
方差的意义:方差是用来衡量数据在平均数附近波动大小的量,方差()越大,数据的波动性越大,方差越小,数据的波动性越小.
【性质】
①当一组数据同时加上一个数时,其平均数、中位数、众数也增加,而其方差不变;
②当一组数据扩大倍时,其平均数、中位数和众数也扩大倍,其方差扩大倍.
标准差的概念:方差的算术平方根.
极差的概念:一组数据中最大值减去最小值的差叫做极差。
极差的意义:反映了这组数据的变化范围。
知识点五 概率的有关概念
概率的概念:某种事件在某一条件下可能发生,也可能不发生,但可以知道它发生的可能性的大小,我们把刻划(描述)事件发生的可能性的大小的量叫做概率.
事件类型:
①必然事件:有些事情我们事先肯定它一定发生,这些事情称为必然事件.
②不可能事件:有些事情我们事先肯定它一定不会发生,这些事情称为不可能事件.
③不确定事件:许多事情我们无法确定它会不会发生,这些事情称为不确定事件.
概率的计算:一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为
知识点六 概率计算
利用列举法求概率
方法一:直接列举法求概率
当一次试验中,可能出现的结果是有限个,并且各种结果发生的可能性相等时,通常采用直接列举法。
方法二:列表法求概率
当一次试验要设计两个因素, 并且可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法。
方法三:树状图法求概率
当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率。
利用频率估计概率
实际上,我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率.用频率估计概率 ,虽然不像列举法能确切地计算出随机事件的概率,但由于不受“各种结果出现的可能性相等”的条件限制,使得可求概率的随机事件的范围扩大.
真题演练
一.选择题(共10小题)
1.(2021•路南区一模)下列说法正确的是( )
A.调查某班学生的身高情况,适宜采用抽样调查
B.“若m,n互为倒数,则mn=1”,这一事件是必然事件
C.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1
D.“1、3、2、1的众数一定是2”,这一事件是随机事件
2.(2021•安次区一模)一组数据4,6,6,8,若增加一个数据6,则发生变化的统计量为( )
A.平均数 B.中位数 C.方差 D.众数
3.(2021•滦南县二模)下列说法正确的是( )
A.若甲、乙两组数据的平均数相同,S甲2=0.1,S乙2=0.04,则甲组数据较稳定
B.明天降雨的概率是“80%”表示明天有80%的时间降雨
C.一组数据1,5,3,2,3,4,8的众数和中位数都是3
D.小明买体育彩票中一等奖是必然事件
4.(2021•唐山一模)小明在计算一组数据的方差时,列出的算式如下:s2[(7)2+(8)2+(8)2+(8)2+(9)2],根据算式信息,下列说法中,错误的是( )
A.数据个数是5 B.数据平均数是8
C.数据众数是8 D.数据的方差是0
5.(2021•河北模拟)某校七年级共有5个班级,每个班的人数在50人左右.为了了解该校七年级学生最喜欢的体育项目,七年级(二)班的四位同学各自设计了如下的调查方案:
甲:我准备给七年级每班的学习委员都发一份问卷,由学习委员代表班级填写完成.
乙:我准备给七年级所有女生都发一份问卷,填写完成.
丙:我准备在七年级每个班随机抽取10名同学各发一份问卷,填写完成.
丁:我准备在七年级随机抽取一个班,给这个班所有的学生每人发一份问卷,填写完成.
则四位同学的调查方案中,能更好地获得该校学生最喜欢的体育项目的是( )
A.甲 B.乙 C.丙 D.丁
6.(2021•迁西县模拟)一个小球在如图所示的地板上自由滚动,并随机停在某块方砖上.如果每一块方砖除颜色外完全相同,那么小球最终停留在白砖上的概率( )
A. B. C. D.1
7.(2021•开平区一模)某班随机调查了10名学生,了解他们一周在校的体育锻炼时间,结果如表所示:
时间(小时) | 5 | 6 | 7 | 8 |
人数 | 2 | 3 | 4 | 1 |
则这10名学生这一周在校的体育锻炼时间的众数为( )
A.5小时 B.6小时 C.7小时 D.8小时
8.(2021•海港区模拟)甲、乙两班举行跳绳比赛,参赛学生每分跳绳的个数统计结果如下表:
班级 | 参赛人数 | 中位数 | 方差 | 平均数 |
甲 | 55 | 149 | 191 | 135 |
乙 | 55 | 151 | 110 | 135 |
某同学分析上表后得到如下结论:①甲、乙两班学生的平均成绩相同;②乙班优秀的人数多于甲班优秀的人数(每分钟跳绳的个数≥150为优秀);③甲班成绩的波动比乙班大.上述结论中正确的是( )
A.①②③ B.①② C.①③ D.②③
9.(2021•河北模拟)下列结论正确的是( )
A.随机事件发生的概率为
B.关于x的方程ax2+bx+c=0,若b2﹣4ac>0,则方程有两个不相等的实数根的概率为1
C.若AC、BD为菱形ABCD的对角线,则AC⊥BD的概率为1
D.概率很小的事件不可能发生
10.(2020•阜新)如图,是小明绘制的他在一周内每天跑步圈数的折线统计图.下列结论正确的是( )
A.众数是9 B.中位数是8.5
C.平均数是9 D.方差是7
二.填空题(共5小题)
11.(2020•秦皇岛一模)已知一组样本数据:1,2,3,4,5,1,则这组样本的中位数为 .
12.(2017•铜仁市)一组数据2,3,2,5,4的中位数是 .
13.(2020•遵化市三模)按如图所示的程序,若输入一个数字x,经过一次运算后,可得对应的y值.若输入的x值为﹣5,则输出的y值为 ;若依次输入5个连续的自然数,输出的y的平均数的倒数是50,则所输入的最小的自然数是 .
14.(2020•河北模拟)对于三个数a、b、c,用M{a,b,c}表示这三个数的中位数,用max{a,b,c}表示这三个数中最大数,
例如:M{﹣2,﹣1,0}=﹣1,max{﹣2,﹣1,0}=0,max{﹣2,﹣1,a}.
解决问题:M{sin45°,cos60°,tan60°}= ,如果max{3,5﹣3x,2x﹣6}=3,则x的取值范围为 .
15.(2020•河北区二模)在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .
三.解答题(共3小题)
16.(2021•河北模拟)定义新运算“★”和“#”如下:a★b=ab+b,a#b=ab﹣a2.例如:1★2=1×2+2=4,1#3=1×3﹣12=2.
(1)计算;
(2)已知是关于x的不等式组,求该不等式组的所有整数解的中位数.
17.(2021•滦州市一模)我市就“网络直播课”的满意度进行了随机在线问卷调查,调查结果分为四类:A.非常满意;B.满意;C.一般;D.不满意,将收集到的信息进行了统计,绘制成如下不完整的统计表(如下所示).
频数分布统计表:
类别 | 频数 | 频率 |
A | 60 | n |
B | m | 0.4 |
C | 90 | 0.3 |
D | 30 | 0.1 |
请你根据统计图表所提供的信息解答下列问题:
(1)m= ;n= .
(2)若该校共有学生3000人,请你根据上述调查结果,估计该校对“网络直播课”满意度为A类和B类的学生共有多少人.
(3)为改进教学,学校决定从选填结果是D类的学生中,选取甲、乙、丙、丁四人,随机抽取两名同学参与网络座谈会,求甲、乙两名同学同时被抽中的概率.
18.(2021•石家庄模拟)某校为了了解家长和学生参与“全国中小学生新冠肺炎疫情防控”专题教育的情况,在本校学生中随机抽取部分学生作调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长参与;D.家长和学生都未参与.请根据图中提供的信息,解答下列问题:
(1)在这次抽样调查中,共调查了 名学生;
(2)C类所对应扇形的圆心角的度数是 ,并补全条形统计图;
(3)根据抽样调查结果,试估计该校1800名学生中“家长和学生都未参与”的人数.
相关试卷
这是一份2022-2023 数学浙教版新中考精讲精练 考点31数据的分析,文件包含2022-2023数学浙教版新中考精讲精练考点31数据的分析解析版docx、2022-2023数学浙教版新中考精讲精练考点31数据的分析原卷版docx等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。
这是一份2022-2023 数学冀教版新中考精讲精练 考点29 相似形,文件包含2022-2023数学冀教版新中考精讲精练考点29相似形解析版docx、2022-2023数学冀教版新中考精讲精练考点29相似形原卷版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
这是一份2022-2023 数学冀教版新中考精讲精练 考点25 旋转,文件包含2022-2023数学冀教版新中考精讲精练考点25旋转解析版docx、2022-2023数学冀教版新中考精讲精练考点25旋转原卷版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。