初中数学中考复习 专题09 一元二次方程及其应用(原卷版)
展开专题09 一元二次方程及其应用
1.定义:等号两边都是整式,只含有一个未知数,并且未知数的最高次数是2的方程,叫做一元二次方程。
2.一元二次方程的一般形式:ax2+bx+c=0(a≠0)。其中ax2 是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
3. 一元二次方程的根:使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根。
4.一元二次方程的解法
有直接开方法、配方法、公式法、因式分解法。
(1)直接开方法。
适用形式:x2=p、(x+n)2=p或(mx+n)2=p。
(2)配方法。套用公式a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2,配方法解一元二次方程的一般步骤是:
①化简——把方程化为一般形式,并把二次项系数化为1;
②移项——把常数项移项到等号的右边;
③配方——两边同时加上b2,把左边配成x2+2bx+b2的形式,并写成完全平方的形式;
④开方,即降次;
⑤解一次方程。
(3)公式法。
当b2-4ac≥0时,方程ax2+bx+c=0的实数根可写为:的形式,这个式子叫做一元二次方程ax2+bx+c=0的求根公式。这种解一元二次方程的方法叫做公式法。
①b2-4ac>0时,方程有两个不相等的实数根。
,
②b2-4ac=0时,方程有两个相等的实数根。
③b2-4ac<0时,方程无实数根。
定义:b2-4ac叫做一元二次方程ax2+bx+c=0的根的判别式,通常用字母Δ表示,即Δ=b2-4ac。
(4)因式分解法。因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。主要用提公因式法、平方差公式。
5.一元二次方程根与系数的关系
如果方程的两个实数根是,那么,。也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商。
6.解有关一元二次方程的实际问题的一般步骤
第1步:审题。认真读题,分析题中各个量之间的关系。
第2步:设未知数。根据题意及各个量的关系设未知数。
第3步:列方程。根据题中各个量的关系列出方程。
第4步:解方程。根据方程的类型采用相应的解法。
第5步:检验。检验所求得的根是否满足题意。
第6步:答。
【例题1】 (2019安徽)解方程:(x﹣1)2=4.
【例题2】(2019山西)一元二次方程配方后可化为( )
A. B. C. D.
【例题3】(2019年山东省威海市)一元二次方程3x2=4﹣2x的解是 .
【例题4】(2019年江苏省扬州市)一元二次方程x(x﹣2)=x﹣2的根是 .
【例题5】(2019北京市) 关于x的方程有实数根,且m为正整数,求m的值及此时方程的根.
【例题6】(2019四川泸州)已知x1,x2是一元二次方程x2﹣x﹣4=0的两实根,则(x1+4)(x2+4)的值是 .
【例题7】 (2019安徽)据国家统计局数据,2018年全年国内生产总值为90.3万亿,比2017年增长6.6%.假设国内生产总值的年增长率保持不变,则国内生产总值首次突破100万亿的年份是( )
A.2019年 B.2020年 C.2021年 D.2022年
一、选择题
1.( 2019甘肃省兰州市) x=1是关于的一元二次方程x2+ax+2b=0的解,则2a+4b=( )
A. -2 B. -3 C. 4 D. -6
2.(2019•湖南怀化)一元二次方程x2+2x+1=0的解是( )
A.x1=1,x2=﹣1 B.x1=x2=1 C.x1=x2=﹣1 D.x1=﹣1,x2=2
3.(2019•浙江金华)用配方法解方程x2-6x-8=0时,配方结果正确的是( )
A. (x-3)2=17 B. (x-3)2=14 C. (x-6)2=44 D. (x-3)2=1
4. (2019湖北咸宁)若关于x的一元二次方程x2﹣2x+m=0有实数根,则实数m的取值范围是( )
A.m<1 B.m≤1 C.m>1 D.m≥1
5.(2019内蒙古包头市)已知等腰三角形的三边长分别为a,b,4,且a,b是关于x的一元二次方程x2-12x+m+2=0的两根,则m的值是( )
A. 34 B.30 C.30或34 D.30或36
6.(2019•山东省聊城市)若关于x的一元二次方程(k﹣2)x2﹣2kx+k=6有实数根,则k的取值范围为( )
A.k≥0 B. k≥0且k≠2 C.k≥ D.k≥且k≠2
7. (2019湖北仙桃)若方程x2﹣2x﹣4=0的两个实数根为α,β,则α2+β2的值为( )
A.12 B.10 C.4 D.﹣4
8. (2019•江苏泰州)方程2x2+6x﹣1=0的两根为x1 、x2 则x1+x2等于( )
A.﹣6 B.6 C.﹣3 D.3
9.(2019山东淄博)若x1+x2=3,x12+x22=5,则以x1,x2为根的一元二次方程是( )
A.x2﹣3x+2=0 B.x2+3x﹣2=0 C.x2+3x+2=0 D.x2﹣3x﹣2=0
10. (2019•广东)已知x1.x2是一元二次方程了x2﹣2x=0的两个实数根,下列结论错误的是( )
A.x1≠x2 B.x12﹣2x1=0 C.x1+x2=2 D.x1·x2=2
11.(2019•广西贵港)若α,β是关于x的一元二次方程x2﹣2x+m=0的两实根,且+=﹣,
则m等于( )
A.﹣2 B.﹣3 C.2 D.3
12.(2019•浙江宁波)能说明命题“关于x的方程x2﹣4x+m=0一定有实数根”是假命题的反例为( )
A.m=﹣1 B.m=0 C.m=4 D.m=5
13.(2019▪黑龙江哈尔滨)某商品经过连续两次降价,售价由原来的每件25元降到每件16元,则平均每次降价的百分率为( )
A.20% B.40% C.18% D.36%
14. (2019•湖南衡阳)国家实施”精准扶贫“政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为x,根据题意列方程得( )
A.9(1﹣2x)=1 B.9(1﹣x)2=1 C.9(1+2x)=1 D.9(1+x)2=1
二、填空题
15. (2019湖北十堰)对于实数a,b,定义运算“◎”如下:a◎b=(a+b)2﹣(a﹣b)2.若(m+2)◎(m﹣3)=24,则m= .
16. (2019吉林长春)一元二次方程x2-3x+1=0根的判别式的值为 .
17.(2019吉林省)若关于x的一元二次方程(x+3)2=c有实数根,则c的值可以为 (写出一个即可)
18.(2019年湖北省荆门市)已知x1,x2是关于x的方程x2+(3k+1)x+2k2+1=0的两个不相等实数根,且满足(x1﹣1)(x2﹣1)=8k2,则k的值为 .
19. (2019广西桂林)一元二次方程的根是 .
20.(2019年四川省遂宁市)若关于x的方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围为 .
21.(2019年江西省)设x1,x2是一元二次方程x2﹣x﹣1=0的两根,则x1+x2+x1x2= .
22.(2019年四川省攀枝花市)已知x1,x2是方程x2﹣2x﹣1=0的两根,则x12+x22= .
23.(2019年四川省成都市)已知x1,x2是关于x的一元二次方程x2+2x+k﹣1=0的两个实数根,且x12+x22﹣x1x2=13,则k的值为 .
24.(2019年甘肃省天水市)中国“一带一路”给沿线国家和地区带来很大的经济效益,沿线某地区居民2016年人均年收入20000元,到2018年人均年收入达到39200元.则该地区居民年人均收入平均增长率为 .(用百分数表示)
25.(2019年四川省宜宾市)某产品每件的生产成本为50元,原定销售价65元,经市场预测,从现在开始的第一季度销售价格将下降10%,第二季度又将回升5%.若要使半年以后的销售利润不变,设每个季度平均降低成本的百分率为x,根据题意可列方程是 .
26.(2019年江苏省连云港市)已知关于x的一元二次方程ax2+2x+2﹣c=0有两个相等的实数根,则+c的值等于 .
27.(2019年浙江省嘉兴市)在x2+ +4=0的括号中添加一个关于x的一次项,使方程有两个相等的实数根.
28.(2019年山东省枣庄市)已知关于x的方程ax2+2x﹣3=0有两个不相等的实数根,则a的取值范围是 .
三、解答题
29.(2019年浙江省绍兴市)x为何值时,两个代数式x2+1,4x+1的值相等?
30. (2019黑龙江绥化)已知关于x的方程kx2-3x+1=0有实数根.
(1)求k的取值范围;
(2)若该方程有两个实数根,分别为x1和x2,当x1+x2+x1x2=4时,求k的值.
31. ( 2019湖北十堰)已知于x的元二次方程x2﹣6x+2a+5=0有两个不相等的实数根x1,x2.
(1)求a的取值范围;
(2)若x12+x22﹣x1x2≤30,且a为整数,求a的值.
32. (2019孝感)已知关于x的一元二次方程x2﹣2(a﹣1)x+a2﹣a﹣2=0有两个不相等的实数根x1,x2.
(1)若a为正整数,求a的值;
(2)若x1,x2满足x12+x22﹣x1x2=16,求a的值.
33.(2019江苏徐州)如图所示,有一块矩形硬纸板,长30cm,宽20cm.在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子。当剪去正方形的边长取何值时,所得长方体盒子的侧面积为200cm2?
34.(2019•湖南衡阳)关于x的一元二次方程x2﹣3x+k=0有实数根.
(1)求k的取值范围;
(2)如果k是符合条件的最大整数,且一元二次方程(m﹣1)x2+x+m﹣3=0与方程x2﹣3x+k=0有一个相同的根,求此时m的值.
35. (2019•广西贵港)为了满足师生的阅读需求,某校图书馆的藏书从2016年底到2018年底两年内由5万册增加到7.2万册.
(1)求这两年藏书的年均增长率;
(2)经统计知:中外古典名著的册数在2016年底仅占当时藏书总量的5.6%,在这两年新增加的图书中,中外古典名著所占的百分率恰好等于这两年藏书的年均增长率,那么到2018年底中外古典名著的册数占藏书总量的百分之几?
36. (2019•湖南长沙)近日,长沙市教育局出台《长沙市中小学教师志愿辅导工作实施意见》,鼓励教师参与志愿辅导,某区率先示范,推出名师公益大课堂,为学生提供线上线下免费辅导,据统计,第一批公益课受益学生2万人次,第三批公益课受益学生2.42万人次.
(1)如果第二批,第三批公益课受益学生人次的增长率相同,求这个增长率;
(2)按照这个增长率,预计第四批公益课受益学生将达到多少万人次?
37. (2019•湖南邵阳)2019年1月14日,国新办举行新闻发布会,海关总署新闻发言人李魁文在会上指出:在2018年,我国进出口规模创历史新高,全年外贸进出口总值为30万亿元人民币.有望继续保持全球货物贸易第一大国地位.预计2020年我国外贸进出口总值将达36.3万亿元人民币.求这两年我国外贸进出口总值的年平均增长率.
38.(2019▪湖北黄石)已知关于x的一元二次方程x2﹣6x+(4m+1)=0有实数根.
(1)求m的取值范围;
(2)若该方程的两个实数根为x1.x2,且|x1﹣x2|=4,求m的值.
39. (2019•南京)某地计划对矩形广场进行扩建改造.如图,原广场长50m,宽40m,要求扩充后的矩形广场长与宽的比为3:2.扩充区域的扩建费用每平方米30元,扩建后在原广场和扩充区域都铺设地砖,铺设地砖费用每平方米100元.如果计划总费用642000元,扩充后广场的长和宽应分别是多少米?
40. (2019•山东省德州市 )习近平总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气”.某校为响应我市全民阅读活动,利用节假日面向社会开放学校图书馆.据统计,第一个月进馆128人次,进馆人次逐月增加,到第三个月末累计进馆608人次,若进馆人次的月平均增长率相同.
(1)求进馆人次的月平均增长率;
(2)因条件限制,学校图书馆每月接纳能力不超过500人次,在进馆人次的月平均增长率
不变的条件下,校图书馆能否接纳第四个月的进馆人次,并说明理由.
初中数学中考复习 专题11 一元二次方程及其应用(原卷版): 这是一份初中数学中考复习 专题11 一元二次方程及其应用(原卷版),共7页。试卷主要包含了一元二次方程的定义,一元二次方程的一般形式,一元二次方程的根,一元二次方程的解法,2=9的根是 等内容,欢迎下载使用。
初中数学中考复习 专题10 分式方程及其应用(原卷版): 这是一份初中数学中考复习 专题10 分式方程及其应用(原卷版),共5页。试卷主要包含了分式方程的定义,解分式方程的一般方法等内容,欢迎下载使用。
初中数学中考复习 专题09 一元二次方程及其应用(解析版): 这是一份初中数学中考复习 专题09 一元二次方程及其应用(解析版),共21页。试卷主要包含了定义等内容,欢迎下载使用。