初中数学中考复习 专题11 平行线与三角形-2022年中考数学真题分项汇编(全国通用)(原卷版)
展开这是一份初中数学中考复习 专题11 平行线与三角形-2022年中考数学真题分项汇编(全国通用)(原卷版),共14页。
专题11 平行线与三角形
一.选择题
1.(2022·湖北宜昌·中考真题)如图,在中,分别以点和点为圆心,大于长为半径画弧,两弧相交于点,.作直线,交于点,交于点,连接.若,,,则的周长为( )
A.25 B.22 C.19 D.18
2.(2022·浙江台州·中考真题)如图,点在的边上,点在射线上(不与点,重合),连接,.下列命题中,假命题是( )
A.若,,则 B.若,,则
C.若,,则 D.若,,则
3.(2022·江苏宿迁·中考真题)若等腰三角形的两边长分别是3cm和5cm,则这个等腰三角形的周长是( )
A.8cm B.13cm C.8cm或13cm D.11cm或13cm
4.(2022·浙江杭州·中考真题)如图,CD⊥AB于点D,已知∠ABC是钝角,则( )
A.线段CD是ABC的AC边上的高线 B.线段CD是ABC的AB边上的高线
C.线段AD是ABC的BC边上的高线 D.线段AD是ABC的AC边上的高线
5.(2022·湖南邵阳·中考真题)下列长度的三条线段能首尾相接构成三角形的是( )
A.,, B.,,
C.,, D.,,
6.(2022·云南·中考真题)如图,OB平分∠AOC,D、E、F分别是射线OA、射线OB、射线OC上的点,D、E、F与O点都不重合,连接ED、EF若添加下列条件中的某一个.就能使DOEFOE,你认为要添加的那个条件是( )
A.OD=OE B.OE=OF C.∠ODE =∠OED D.∠ODE=∠OFE
7.(2022·浙江湖州·中考真题)如图,已知在锐角△ABC中,AB=AC,AD是△ABC的角平分线,E是AD上一点,连结EB,EC.若∠EBC=45°,BC=6,则△EBC的面积是( )
A.12 B.9 C.6 D.
8.(2022·江苏扬州·中考真题)如图,小明家仿古家具的一块三角形形状的玻璃坏了,需要重新配一块.小明通过电话给玻璃店老板提供相关数据,为了方便表述,将该三角形记为,提供了下列各组元素的数据,配出来的玻璃不一定符合要求的是( )
A. B. C. D.
9.(2022·山东泰安·中考真题)如图,,点M、N分别在边上,且,点P、Q分别在边上,则的最小值是( )
A. B. C. D.
10.(2022·浙江金华·中考真题)如图,与相交于点O,,不添加辅助线,判定的依据是( )
A. B. C. D.
11.(2022·浙江金华·中考真题)已知三角形的两边长分别为和,则第三边的长可以是( )
A. B. C. D.
12.(2022·安徽·中考真题)已知点O是边长为6的等边△ABC的中心,点P在△ABC外,△ABC,△PAB,△PBC,△PCA的面积分别记为,,,.若,则线段OP长的最小值是( )
A. B. C. D.
13.(2022·四川南充·中考真题)如图,在中,的平分线交于点D,DE//AB,交于点E,于点F,,则下列结论错误的是( )
A. B. C. D.
14.(2022·四川德阳·中考真题)八一中学校九年级2班学生杨冲家和李锐家到学校的直线距离分别是和.那么杨冲,李锐两家的直线距离不可能是( )
A. B. C. D.
15.(2022·山东泰安·中考真题)如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP交于点P,若∠BPC=40°,则∠CAP=( )
A.40° B.45° C.50° D.60°
16.(2022·浙江绍兴·中考真题)如图,把一块三角板的直角顶点B放在直线上,,ACEF,则( )
A.30° B.45° C.60° D.75°
17.(2022·安徽·中考真题)两个矩形的位置如图所示,若,则( )
A. B. C. D.
18.(2022·浙江杭州·中考真题)如图,已知,点E在线段AD上(不与点A,点D重合),连接CE.若∠C=20°,∠AEC=50°,则∠A=( )
A.10° B.20° C.30° D.40°
19.(2022·湖南娄底·中考真题)一条古称在称物时的状态如图所示,已知,则( )
A. B. C. D.
20.(2022·江苏苏州·中考真题)如图,直线AB与CD相交于点O,,,则的度数是( )
A.25° B.30° C.40° D.50°
二.填空题
21.(2022·湖南株洲·中考真题)如图所示,点在一块直角三角板上(其中),于点,于点,若,则_________度.
22.(2022·浙江嘉兴·中考真题)小曹同学复习时将几种三角形的关系整理如图,请帮他在横线上____填上一个适当的条件.
23.(2022·浙江绍兴·中考真题)如图,在中,,,以点为圆心,长为半径作弧,交射线于点,连接,则的度数是______.
24.(2022·云南·中考真题)已知△ABC是等腰三角形.若∠A=40°,则△ABC的顶角度数是____.
25.(2022·山东滨州·中考真题)如图,屋顶钢架外框是等腰三角形,其中,立柱,且顶角,则的大小为_______.
26.(2022·山东泰安·中考真题)如图,△ ABC 中,∠BAC=90°,AB=3,AC=4,点 D 是 BC 的中点,将△ ABD 沿 AD 翻折得到△ AED,连 CE,则线段 CE 的长等于_____
27.(2022·湖北武汉·中考真题)如图,沿方向架桥修路,为加快施工进度,在直线上湖的另一边的处同时施工.取,,,则,两点的距离是_________.
28.(2022·湖北黄冈·中考真题)勾股定理最早出现在商高的《周髀算经》:“勾广三,股修四,经隅五”.观察下列勾股数:3,4,5;5,12,13;7,24,25;…,这类勾股数的特点是:勾为奇数,弦与股相差为1,柏拉图研究了勾为偶数,弦与股相差为2的一类勾股数,如:6,8,10;8,15,17;…,若此类勾股数的勾为2m(m≥3,m为正整数),则其弦是________(结果用含m的式子表示).
29.(2022·江苏苏州·中考真题)定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”.若等腰△ABC是“倍长三角形”,底边BC的长为3,则腰AB的长为______.
30.(2022·江苏扬州·中考真题)将一副直角三角板如图放置,已知,,,则________°.
31.(2022·湖北黄冈·中考真题)如图,直线a∥b,直线c与直线a,b相交,若∠1=54°,则∠3=_____度.
32.(2022·四川达州·中考真题)如图,在中,,,分别以点A,B为圆心,大于的长为半径作弧,两弧分别相交于点M,N,作直线,交于点D,连接,则的度数为_____.
33.(2022·湖北黄冈·中考真题)如图,已知,,请你添加一个条件________,使.
三.解答题
34.(2022·浙江温州·中考真题)如图,是的角平分线,,交于点E.
(1)求证:.(2)当时,请判断与的大小关系,并说明理由.
35.(2022·四川乐山·中考真题)如图,B是线段AC的中点,,求证:.
36.(2022·浙江杭州·中考真题)如图,在Rt△ACB中,∠ACB=90°,点M为边AB的中点,点E在线段AM上,EF⊥AC于点F,连接CM,CE.已知∠A=50°,∠ACE=30°.(1)求证:CE=CM.(2)若AB=4,求线段FC的长.
37.(2022·陕西·中考真题)如图,在△ABC中,点D在边BC上,CD=AB,DE∥AB,∠DCE=∠A.求证:DE=BC.
38.(2022·湖南衡阳·中考真题)如图,在中,,、是边上的点,且,求证:.
39.(2022·湖南怀化·中考真题)如图,在等边三角形ABC中,点M为AB边上任意一点,延长BC至点N,使CN=AM,连接MN交AC于点P,MH⊥AC于点H.(1)求证:MP=NP;(2)若AB=a,求线段PH的长(结果用含a的代数式表示).
40.(2022·浙江丽水·中考真题)如图,将矩形纸片折叠,使点B与点D重合,点A落在点P处,折痕为.(1)求证:;(2)若,求的长.
41.(2022·四川自贡·中考真题)如图,△是等边三角形, 在直线上,.求证: .
42.(2022·重庆·中考真题)我们知道,矩形的面积等于这个矩形的长乘宽,小明想用其验证一个底为a,高为h的三角形的面积公式为.想法是:以为边作矩形,点A在边上,再过点A作的垂线,将其转化为证三角形全等,由全等图形面积相等来得到验证.按以上思路完成下面的作图与填空:证明:用直尺和圆规过点A作的垂线交于点D.(只保留作图痕迹)
在和中,
∵,
∴.
∵,
∴______①____.
∵,
∴______②_____.
又∵____③______.
∴().
同理可得:_____④______.
.
43.(2022·江西·中考真题)如图是的正方形网格,请仅用无刻度的直尺按要求完成以下作图(保留作图痕迹).
(1)在图1中作的角平分线;
(2)在图2中过点作一条直线,使点,到直线的距离相等.
44.(2022·新疆·中考真题)如图,在巾,,点O为BC的中点,点D是线段OC上的动点(点D不与点O,C重合),将沿AD折叠得到,连接BE.
(1)当时,___________;
(2)探究与之问的数量关系,并给出证明;
(3)设,的面积为x,以AD为边长的正方形的面积为y,求y关于x的函数解析式.
45.(2022·重庆·中考真题)如图,在锐角中,,点,分别是边,上一动点,连接交直线于点.(1)如图1,若,且,,求的度数;
(2)如图2,若,且,在平面内将线段绕点顺时针方向旋转得到线段,连接,点是的中点,连接.在点,运动过程中,猜想线段,,之间存在的数量关系,并证明你的猜想;(3)若,且,将沿直线翻折至所在平面内得到,点是的中点,点是线段上一点,将沿直线翻折至所在平面内得到,连接.在点,运动过程中,当线段取得最小值,且时,请直接写出的值.
46.(2022·重庆·中考真题)在中,,,D为的中点,E,F分别为,上任意一点,连接,将线段绕点E顺时针旋转90°得到线段,连接,.
(1)如图1,点E与点C重合,且的延长线过点B,若点P为的中点,连接,求的长;
(2)如图2,的延长线交于点M,点N在上,且,求证:;
(3)如图3,F为线段上一动点,E为的中点,连接,H为直线上一动点,连接,将沿翻折至所在平面内,得到,连接,直接写出线段的长度的最小值.
47.(2022·山东泰安·中考真题)正方形中,P为边上任一点,于E,点F在的延长线上,且,连接,的平分线交于G,连接.(1)求证:是等腰直角三角形;(2)求证:;(3)若,P为的中点,求的长.
相关试卷
这是一份初中数学中考复习 专题40三角形(5)-2020年全国中考数学真题分项汇编(第02期,全国通用)(原卷版),共46页。试卷主要包含了解答题等内容,欢迎下载使用。
这是一份初中数学中考复习 专题39三角形(4)-2020年全国中考数学真题分项汇编(第02期,全国通用)(原卷版),共31页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。
这是一份初中数学中考复习 专题38三角形(3)-2020年全国中考数学真题分项汇编(第02期,全国通用)(原卷版),共27页。试卷主要包含了填空题等内容,欢迎下载使用。