初中数学中考复习 专题12 三角形-三年(2020-2022)中考数学真题分项汇编(全国通用)(原卷版)
展开
这是一份初中数学中考复习 专题12 三角形-三年(2020-2022)中考数学真题分项汇编(全国通用)(原卷版),共22页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
专题12 三角形 一、单选题1.(2022·湖南永州)下列多边形具有稳定性的是( )A.B.C. D.2.(2022·广西玉林)请你量一量如图中边上的高的长度,下列最接近的是( ) A. B. C. D.3.(2022·江苏宿迁)若等腰三角形的两边长分别是3cm和5cm,则这个等腰三角形的周长是( )A.8cm B.13cm C.8cm或13cm D.11cm或13cm4.(2022·湖南邵阳)下列长度的三条线段能首尾相接构成三角形的是( )A.,, B.,,C.,, D.,,5.(2022·四川凉山)下列长度的三条线段能组成三角形的是( )A.3,4,8 B.5,6,11 C.5,6,10 D.5,5,106.(2022·广西贺州)如图,在Rt△ABC中,∠C=90°,∠B=56°,则∠A的度数为( )A. B. C. D.7.(2021·四川宜宾)若长度分别是a、3、5的三条线段能组成一个三角形,则a的值可以是( )A.1 B.2 C.4 D.88.(2021·山东泰安)如图,直线,三角尺的直角顶点在直线m上,且三角尺的直角被直线m平分,若,则下列结论错误的是( )A. B. C. D.9.(2020·山东淄博)如图,若△ABC≌△ADE,则下列结论中一定成立的是( )A.AC=DE B.∠BAD=∠CAE C.AB=AE D.∠ABC=∠AED10.(2020·广东深圳)如图,已知AB=AC,BC=6,尺规作图痕迹可求出BD=( )A.2 B.3 C.4 D.511.(2020·福建)如图,面积为1的等边三角形中,分别是,,的中点,则的面积是( )A.1 B. C. D.12.(2020·四川巴中)如图,在中,,AD平分,,,,则AC的长为( )A.9 B.8 C.6 D.713.(2020·广西贺州)如图,将两个完全相同的Rt△ACB和Rt△A'C′B′拼在一起,其中点A′与点B重合,点C'在边AB上,连接B′C,若∠ABC=∠A′B′C′=30°,AC=A′C′=2,则B′C的长为( )A.2 B.4 C.2 D.414.(2020·四川广安)如图,在五边形ABCDE中,若去掉一个30°的角后得到一个六边形BCDEMN,则∠l+∠2的度数为( )A.210° B.110° C.150° D.100°15.(2020·山东济南)如图,在中,AB=AC,分别以点A、B为圆心,以适当的长为半径作弧,两弧分别交于E,F,作直线EF,D为BC的中点,M为直线EF上任意一点.若BC=4,面积为10,则BM+MD长度的最小值为( )A. B.3 C.4 D.516.(2020·山东烟台)如图,点G为的重心,连接CG,AG并延长分别交AB,BC于点E,F,连接EF,若AB=4.4,AC=3.4,BC=3.6,则EF的长度为( )A.1.7 B.1.8 C.2.2 D.2.417.(2020·山东淄博)如图,在△ABC中,AD,BE分别是BC,AC边上的中线,且AD⊥BE,垂足为点F,设BC=a,AC=b,AB=c,则下列关系式中成立的是( )A.a2+b2=5c2 B.a2+b2=4c2 C.a2+b2=3c2 D.a2+b2=2c218.(2020·湖南益阳)如图,在中,的垂直平分线交于点,平分,若,则的度数为( )A. B. C. D.19.(2021·广西河池)如图,,是的外角,,则的大小是( )A. B. C. D.20.(2021·黑龙江哈尔滨)如图,,点和点是对应顶点,点和点是对应顶点,过点作,垂足为点,若,则的度数为( )A. B. C. D.21.(2021·广西贵港)如图,在ABC中,∠ABC=90°,AB=8,BC=12,D为AC边上的一个动点,连接BD,E为BD上的一个动点,连接AE,CE,当∠ABD=∠BCE时,线段AE的最小值是( )A.3 B.4 C.5 D.622.(2021·辽宁本溪)如图,在中,,由图中的尺规作图痕迹得到的射线与交于点E,点F为的中点,连接,若,则的周长为( )A. B. C. D.423.(2022·青海)如图,在中,,D是AB的中点,延长CB至点E,使,连接DE,F为DE中点,连接BF.若,,则BF的长为( )A.5 B.4 C.6 D.824.(2022·辽宁大连)如图,在中,,分别以点A和点C为圆心,大于的长为半径作弧,两弧相交于M,N两点,作直线,直线与相交于点D,连接,若,则的长是( )A.6 B.3 C.1.5 D.125.(2022·湖南)如图,点是等边三角形内一点,,,,则与的面积之和为( )A. B. C. D.26.(2022·黑龙江)如图,中,,AD平分与BC相交于点D,点E是AB的中点,点F是DC的中点,连接EF交AD于点P.若的面积是24,,则PE的长是( )A.2.5 B.2 C.3.5 D.327.(2022·四川乐山)如图,在中,,,点D是AC上一点,连接BD.若,,则CD的长为( )A. B.3 C. D.228.(2022·内蒙古包头)如图,在中,,将绕点C顺时针旋转得到,其中点与点A是对应点,点与点B是对应点.若点恰好落在边上,则点A到直线的距离等于( ) A. B. C.3 D.229.(2021·内蒙古鄂尔多斯)如图,在中,,将边沿折叠,使点B落在上的点处,再将边沿折叠,使点A落在的延长线上的点处,两条折痕与斜边分别交于点N、M,则线段的长为( ) A. B. C. D.二、填空题30.(2022·云南)已知△ABC是等腰三角形.若∠A=40°,则△ABC的顶角度数是____.31.(2022·青海西宁)如图,在△ABC中,∠C=90°,∠B=30°,AB=6,将△ABC绕点A逆时针方向旋转15°得到△AB′C′,B′C′交AB于点E,则B′E=________.32.(2021·吉林长春)将一副三角板按如图所示的方式摆放,点D在边AC上,,则的大小为_______度.33.(2020·湖北)如图,在中,是的垂直平分线.若,的周长为13,则的周长为______.34.(2020·山东日照)如图,有一个含有30°角的直角三角板,一顶点放在直尺的一条边上,若∠2=65°,则∠1的度数是_____.35.(2020·江苏常州)如图,在中,的垂直平分线分别交、于点E、F.若是等边三角形,则_________°.36.(2020·辽宁辽宁)如图,在中,,分别是和的中点,连接,点是的中点,连接并延长,交的延长线于点,若,则的长为_________.37.(2021·新疆)如图,在中,,,分别以点A,B为圆心,大于的长为半径作弧,两弧相交于M,N两点,作直线MN交AC于点D,连接BD,则__________.38.(2021·山东聊城)如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为点D和点E,AD与CE交于点O,连接BO并延长交AC于点F,若AB=5,BC=4,AC=6,则CE:AD:BF值为____________.56.(2022·北京)如图,在中,平分若则____.39.(2022·山东青岛)如图,已知的平分线交于点E,且.将沿折叠使点C与点E恰好重合.下列结论正确的有:__________(填写序号)①②点E到的距离为3③④上,且CP=1,将CP绕点C在平面内旋转,点P的对应点为点Q,连接AQ,DQ.当∠ADQ=90°时,AQ的长为______.41.(2022·青海西宁)矩形ABCD中,,,点E在AB边上,.若点P是矩形ABCD边上一点,且与点A,E构成以AE为腰的等腰三角形,则等腰三角形AEP的底边长是________.42.(2022·辽宁锦州)如图,在中,,点D为的中点,将绕点D逆时针旋转得到,当点A的对应点落在边上时,点在的延长线上,连接,若,则的面积是____________.43.(2022·广西贵港)如图,将绕点A逆时针旋转角得到,点B的对应点D恰好落在边上,若,则旋转角的度数是______.44.(2022·湖北十堰)【阅读材料】如图①,四边形中,,,点,分别在,上,若,则. 【解决问题】如图②,在某公园的同一水平面上,四条道路围成四边形.已知,,,,道路,上分别有景点,,且,,若在,之间修一条直路,则路线的长比路线的长少_________(结果取整数,参考数据:).45.(2022·湖北荆州)如图,在Rt△ABC中,∠ACB=90°,通过尺规作图得到的直线MN分别交AB,AC于D,E,连接CD.若,则CD=______.三、解答题46.(2022·贵州铜仁)如图,点C在上,.求证:. 47.(2022·吉林)如图,,.求证:. 48.(2022·广西柳州)如图,点A,D,C,F在同一条直线上,AB=DE,BC=EF.有下列三个条件:①AC=DF,②∠ABC=∠DEF,③∠ACB=∠DFE.(1)请在上述三个条件中选取一个条件,使得△ABC≌△DEF.你选取的条件为(填写序号)______(只需选一个条件,多选不得分),你判定△ABC≌△DEF的依据是______(填“SSS”或“SAS”或“ASA”或“AAS”);(2)利用(1)的结论△ABC≌△DEF.求证:AB∥DE. 49.(2021·贵州铜仁)如图,交于点,在与中,有下列三个条件:①,②,③.请你在上述三个条件中选择两个为条件,另一个能作为这两个条件推出来的结论,并证明你的结论(只要求写出一种正确的选法,若多选的只按第一种选法评分,后面的选法不给分) (1)你选的条件为____________、____________,结论为____________;(2)证明你的结论. 50.(2021·广西柳州)如图,有一池塘,要测池塘两端A、B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B,连接并延长到点D,使,连接并延长到点E,使,连接,那么量出的长就是A、B的距离,为什么?请结合解题过程,完成本题的证明. 证明:在和中,∴∴____________51.(2020·四川广安)如图,将等腰三角形纸片ABC沿底边BC上的高AD剪成两个三角形,AB=5个单位长度,BC=6个单位长度.用这两个三角形来拼成四边形,请在下列网格中画出你拼成的四边形(每个小正方形的边长均为1个单位长度,所画四边形全等视为同一种情况),并直接在对应的横线上写出该四边形两条对角线长度的和. 52.(2020·广西柳州)如图,已知OC平分∠MON,点A、B分别在射线OM,ON上,且OA=OB.求证:△AOC≌△BOC. 53.(2020·辽宁鞍山)如图,在四边形中,,点E,F分别在,上,,,求证:. 54.(2020·吉林)如图,在中,,点在边上,且,过点作并截取,且点,在同侧,连接.求证:. 55.(2022·青海西宁)八年级课外兴趣小组活动时,老师提出了如下问题:将因式分解.【观察】经过小组合作交流,小明得到了如下的解决方法:解法一:原式解法二:原式【感悟】对项数较多的多项式无法直接进行因式分解时,我们可以将多项式分为若干组,再利用提公因式法、公式法达到因式分解的目的,这就是因式分解的分组分解法.分组分解法在代数式的化简、求值及方程、函数等学习中起着重要的作用.(温馨提示:因式分解一定要分解到不能再分解为止)【类比】(1)请用分组分解法将因式分解;【挑战】(2)请用分组分解法将因式分解;【应用】(3)“赵爽弦图”是我国古代数学的骄傲,我们利用它验证了勾股定理.如图,“赵爽弦图”是由四个全等的直角三角形围成的一个大正方形,中间是一个小正方形.若直角三角形的两条直角边长分别是a和,斜边长是3,小正方形的面积是1.根据以上信息,先将因式分解,再求值. 56.(2022·甘肃兰州)如图,在中,,,,M为AB边上一动点,,垂足为N.设A,M两点间的距离为xcm(),B,N两点间的距离为ycm(当点M和B点重合时,B,N两点间的距离为0). 小明根据学习函数的经验,对因变量y随自变量x的变化而变化的规律进行了探究.下面是小明的探究过程,请补充完整.(1)列表:下表的已知数据是根据A,M两点间的距离x进行取点、画图、测量,得到了y与x的几组对应值:x/cm00.511.51.822.533.544.55y/cm43.963.793.47a2.992.401.791.230.740.330 请你通过计算,补全表格:______;(2)描点、连线:在平面直角坐标系中,描出表中各组数值所对应的点,并画出函数y关于x的图像; (3)探究性质:随着自变量x的不断增大,函数y的变化趋势:______.(4)解决问题:当时,AM的长度大约是______cm.(结果保留两位小数) 57.(2022·山东青岛)【图形定义】有一条高线相等的两个三角形称为等高三角形.例如:如图①.在和中,分别是和边上的高线,且,则和是等高三角形. 【性质探究】如图①,用,分别表示和的面积.则,∵∴.【性质应用】(1)如图②,D是的边上的一点.若,则__________;(2)如图③,在中,D,E分别是和边上的点.若,,,则__________,_________;(3)如图③,在中,D,E分别是和边上的点,若,,,则__________. 58.(2021·贵州黔西)如图1,D为等边△ABC内一点,将线段AD绕点A逆时针旋转60°得到AE,连接CE,BD的延长线与AC交于点G,与CE交于点F.(1)求证:BD=CE;(2)如图2,连接FA,小颖对该图形进行探究,得出结论:∠BFC=∠AFB=∠AFE.小颖的结论是否正确?若正确,请给出证明;若不正确,请说明理由. 59.(2021·广西河池)如图,是的外角.(1)尺规作图:作的平分线AE(不写作法,保留作图痕迹,用黑色墨水笔将痕迹加黑);(2)若,求证:. 60.(2021·贵州黔东南)在四边形ABCD中,对角线AC平分∠BAD. 【探究发现】(1)如图①,若∠BAD=,∠ABC=∠ADC=.求证:AD+AB=AC;【拓展迁移】(2)如图②,若∠BAD=,∠ABC+∠ADC=.①猜想AB、AD、AC三条线段的数量关系,并说明理由;②若AC=10,求四边形ABCD的面积.
相关试卷
这是一份初中数学中考复习 专题27 规律探究问题-三年(2020-2022)中考数学真题分项汇编(全国通用)(原卷版),共20页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份初中数学中考复习 专题26 动点综合问题-三年(2020-2022)中考数学真题分项汇编(全国通用)(原卷版),共36页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份初中数学中考复习 专题24 与圆有关的压轴题-三年(2020-2022)中考数学真题分项汇编(全国通用)(原卷版),共26页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。