初中数学中考复习 专题16 二次函数的存在性问题(原卷版)
展开【考点1】二次函数与相似三角形问题
【例1】(2020·湖北随州·中考真题)如图,在平面直角坐标系中,抛物线的对称轴为直线,其图象与轴交于点和点,与轴交于点.
(1)直接写出抛物线的解析式和的度数;
(2)动点,同时从点出发,点以每秒3个单位的速度在线段上运动,点以每秒个单位的速度在线段上运动,当其中一个点到达终点时,另一个点也随之停止运动.设运动的时间为秒,连接,再将线段绕点顺时针旋转,设点落在点的位置,若点恰好落在抛物线上,求的值及此时点的坐标;
(3)在(2)的条件下,设为抛物线上一动点,为轴上一动点,当以点,,为顶点的三角形与相似时,请直接写出点及其对应的点的坐标.(每写出一组正确的结果得1分,至多得4分)
【变式1-1】(2019·湖南娄底·中考真题)如图,抛物线与x轴交于点,点,与y轴交于点C,且过点.点P、Q是抛物线上的动点.
(1)求抛物线的解析式;
(2)当点P在直线OD下方时,求面积的最大值.
(3)直线OQ与线段BC相交于点E,当与相似时,求点Q的坐标.
【变式1-2】(2019·辽宁盘锦·中考真题)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点C(0,4),交x轴正半轴于点B,连接AC,点E是线段OB上一动点(不与点O,B重合),以OE为边在x轴上方作正方形OEFG,连接FB,将线段FB绕点F逆时针旋转90°,得到线段FP,过点P作PH∥y轴,PH交抛物线于点H,设点E(a,0).
(1)求抛物线的解析式.
(2)若△AOC与△FEB相似,求a的值.
(3)当PH=2时,求点P的坐标.
【考点2】二次函数与直角三角形问题
【例2】(2020·湖北咸宁·中考真题)如图,在平面直角坐标系中,直线与x轴交于点A,与y轴交于点B,抛物线过点B且与直线相交于另一点.
(1)求抛物线的解析式;
(2)点P是抛物线上的一动点,当时,求点P的坐标;
(3)点在x轴的正半轴上,点是y轴正半轴上的一动点,且满足.
①求m与n之间的函数关系式;
②当m在什么范围时,符合条件的N点的个数有2个?
【变式2-1】如图,抛物线经过A(-3,6),B(5,-4)两点,与y轴交于点C,连接AB,AC,BC.
(1)求抛物线的表达式;
(2)求证:AB平分;
(3)抛物线的对称轴上是否存在点M,使得是以AB为直角边的直角三角形.若存在,求出点M的坐标;若不存在,说明理由.
【变式2-2】(2019·甘肃兰州·中考真题)二次函数的图象交轴于两点,交轴于点.动点从点出发,以每秒2个单位长度的速度沿方向运动,过点作轴交直线于点,交抛物线于点,连接.设运动的时间为秒.
(1)求二次函数的表达式:
(2)连接,当时,求的面积:
(3)在直线上存在一点,当是以为直角的等腰直角三角形时,求此时点的坐标;
(4)当时,在直线上存在一点,使得,求点的坐标
【考点3】二次函数与等腰三角形问题
【例3】(2020·山东济南·中考真题)如图1,抛物线y=﹣x2+bx+c过点A(﹣1,0),点B(3,0)与y轴交于点C.在x轴上有一动点E(m,0)(0m3),过点E作直线l⊥x轴,交抛物线于点M.
(1)求抛物线的解析式及C点坐标;
(2)当m=1时,D是直线l上的点且在第一象限内,若△ACD是以∠DCA为底角的等腰三角形,求点D的坐标;
(3)如图2,连接BM并延长交y轴于点N,连接AM,OM,设△AEM的面积为S1,△MON的面积为S2,若S1=2S2,求m的值.
【变式3-1】(2020·贵州黔东南·中考真题)已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,﹣3),顶点D的坐标为(1,﹣4).
(1)求抛物线的解析式.
(2)在y轴上找一点E,使得△EAC为等腰三角形,请直接写出点E的坐标.
(3)点P是x轴上的动点,点Q是抛物线上的动点,是否存在点P、Q,使得以点P、Q、B、D为顶点,BD为一边的四边形是平行四边形?若存在,请求出点P、Q坐标;若不存在,请说明理由.
【变式3-2】(2019·四川眉山·中考真题)如图1,在平面直角坐标系中,抛物线经过点和点.
(1)求抛物线的解析式及顶点的坐标;
(2)点是抛物线上、之间的一点,过点作轴于点,轴,交抛物线于点,过点作轴于点,当矩形的周长最大时,求点的横坐标;
(3)如图2,连接、,点在线段上(不与、重合),作,交线段于点,是否存在这样点,使得为等腰三角形?若存在,求出的长;若不存在,请说明理由.
【考点4】二次函数与平行四边形问题
【例4】(2020·四川绵阳·中考真题)如图,抛物线过点A(0,1)和C,顶点为D,直线AC与抛物线的对称轴BD的交点为B(,0),平行于y轴的直线EF与抛物线交于点E,与直线AC交于点F,点F的横坐标为,四边形BDEF为平行四边形.
(1)求点F的坐标及抛物线的解析式;
(2)若点P为抛物线上的动点,且在直线AC上方,当△PAB面积最大时,求点P的坐标及△PAB面积的最大值;
(3)在抛物线的对称轴上取一点Q,同时在抛物线上取一点R,使以AC为一边且以A,C,Q,R为顶点的四边形为平行四边形,求点Q和点R的坐标.
【变式4-1】(2020·前郭尔罗斯蒙古族自治县哈拉毛都镇蒙古族中学初三期中)如图,二次函数的图象交x轴于点,,交y轴于点C.点是x轴上的一动点,轴,交直线于点M,交抛物线于点N.
(1)求这个二次函数的表达式;
(2)①若点P仅在线段上运动,如图1.求线段的最大值;
②若点P在x轴上运动,则在y轴上是否存在点Q,使以M,N,C,Q为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q的坐标;若不存在,请说明理由.
【变式4-2】(2020·重庆中考真题)如图,在平面直角坐标系中,已知抛物线与直线AB相交于A,B两点,其中,.
(1)求该抛物线的函数表达式;
(2)点P为直线AB下方抛物线上的任意一点,连接PA,PB,求面积的最大值;
(3)将该抛物线向右平移2个单位长度得到抛物线,平移后的抛物线与原抛物线相交于点C,点D为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E,使以点B,C,D,E为顶点的四边形为菱形,若存在,请直接写出点E的坐标;若不存在,请说明理由.
一、单选题
1.如图,已知动点A,B分别在x轴,y轴正半轴上,动点P在反比例函数(x>0)图象上,PA⊥x轴,△PAB是以PA为底边的等腰三角形.当点A的横坐标逐渐增大时,△PAB的面积将会( )
A.越来越小B.越来越大C.不变D.先变大后变小
2.已知直线y=n与二次函数y=(x﹣2)2﹣1的图象交于点B,点C,二次函数图象的顶点为A,当△ABC是等腰直角三角形时,则n的值为( )
A.1B.C.2﹣D.2+
3.二次函数的函数图象如图,点位于坐标原点,点在轴的正半轴上,点在二次函数位于第一象限的图象上,,,,…都是直角顶点在抛物线上的等腰直角三角形,则的斜边长为( )
A.20B.C.22D.
4.已知抛物线y=﹣x2+1的顶点为P,点A是第一象限内该二次函数图象上一点,过点A作x轴的平行线交二次函数图象于点B,分别过点B、A作x轴的垂线,垂足分别为C、D,连结PA、PD,PD交AB于点E,△PAD与△PEA相似吗?( )
A.始终不相似B.始终相似C.只有AB=AD时相似D.无法确定
5.二次函数y=﹣x2+1的图象与x轴交于A、B两点,与y轴交于点C,下列说法错误的是( ).
A.点C的坐标是(0,1) B.线段AB的长为2
C.△ABC是等腰直角三角形 D.当x>0时,y随x增大而增大
二、填空题
6.如图,直线与二次函数的图象交于点B、点C,二次函数图象的顶点为A,当是等腰直角三角形时,则______.
7.已知二次函数的图象与x轴交于A、B两点,交y轴于C点,且△ABC是直角三角形,请写出符合要求的一个二次函数解析式:___________________
8.已知点P为二次函数y=x2﹣2x﹣3图象上一点,设这个二次函数的图象与x轴交于A,B两点(A在B的右侧),与y轴交于C点,若△APC为直角三角形且AC为直角边,则点P的横坐标的值为_____.
9.二次函数y=2x2+4x+m与x轴交于A、B两点,与y轴交于点C,若△ABC为直角三角形,则m=_____.
10.如图,二次函数y=ax2+bx+c(a>0)图象的顶点为D, 其图象与x轴的交点A、B的横坐标分别为﹣1,3.与y轴负半轴交于点C,当a=时,△ABD是_______三角形;要使△ACB为等腰三角形,则a值为______
11.二次函数y=一x2+ax+b图象与轴交于,两点,且与轴交于点.
(1)则的形状为 ;
(2)在此抛物线上一动点,使得以四点为顶点的四边形是梯形,则点的坐标为 .
12.如图,二次函数Y=-x2-x+2图象与x轴交于A、B两点,与y轴交于C点,点D(m,n)是抛物线在第二象限的部分上的一动点,则四边形OCDA的面积的最大值是______.
13.二次函数的图象如图,点O为坐标原点,点A在y轴的正半轴上,点B、C在二次函数的图象上,四边形OBAC为菱形,且∠OBA=120°,则菱形OBAC的面积为 .
三、解答题
14.如图,已知二次函数()的图象与轴交于点和点,与交轴于点,表示当自变量为时的函数值,对于任意实数,均有.
(1)求该二次函数的解析式;
(2)点是线段上的动点,过点作,交于点,连接.当的面积最大时,求点的坐标;
(3)若平行于轴的动直线与该抛物线交于点,与直线交于点,点的坐标为.是否存在这样的直线,使得是等腰三角形?若存在,请求出点的坐标;若不存在,请说明理由.
15.如图,在平面直角坐标系中,二次函数的图象交坐标轴于A(﹣1,0),B(4,0),C(0,﹣4)三点,点P是直线BC下方抛物线上一动点.
(1)求这个二次函数的解析式;
(2)动点P运动到什么位置时,△PBC面积最大,求出此时P点坐标和△PBC的最大面积.
(3)是否存在点P,使△POC是以OC为底边的等腰三角形?若存在,求出P点坐标;若不存在,请说明理由;
16.已知一次函数的图象与二次函数的图象相交于和,点是线段上的动点(不与重合),过点作轴,与二次函数的图象交于点.
(1)求的值;
(2)求线段长的最大值;
(3)当为的等腰直角三角形时,求出此时点的坐标.
17.如图,已知一次函数的图象与x轴交于点A,与二次函数的图象交于y轴上的一点B,二次函数的图象与x轴只有唯一的交点C,且OC=2.
(1)求二次函数的解析式;
(2)设一次函数的图象与二次函数的图象的另一交点为D,已知P为x轴上的一个动点,且△PBD为直角三角形,求点P的坐标.
18.在平面直角坐标系中,直线y=x﹣2与x轴交于点B,与y轴交于点C,二次函数y=x2+bx+c的图象经过B,C两点,且与x轴的负半轴交于点A.
(1)求二次函数的解析式;
(2)如图1,点M是线段BC上的一动点,动点D在直线BC下方的二次函数图象上.设点D的横坐标为m.
①过点D作DM⊥BC于点M,求线段DM关于m的函数关系式,并求线段DM的最大值;
②若△CDM为等腰直角三角形,直接写出点M的坐标.
19.如图,已知二次函数的图象与轴交于、两点,与轴交于点,的半径为,为上一动点.
(1)求点,的坐标?
(2)是否存在点,使得为直角三角形?若存在,求出点的坐标:若不存在,请说明理由.
20.如图,二次函数的图象经过,,三点.
(1)求该二次函数的解析式;
(2)点是线段上的动点(点与线段的端点不重合),若与相似,求点的坐标.
21.如图, 已知二次函数(,,为常数)的对称轴为,与轴的交点为,的最大值为5,顶点为,过点且平行于轴的直线与抛物线交于点,.
(1)求该二次函数的解析式和点,的坐标.
(2)点是直线上的动点,若点,点,点所构成的三角形与相似,求出所有点的坐标.
22.如图,已知二次函数的图像过点A(-4,3),B(4,4).
(1)求二次函数的解析式:
(2)求证:△ACB是直角三角形;
(3)若点P在第二象限,且是抛物线上的一动点,过点P作PH垂直x轴于点H,是否存在以P、H、D、为顶点的三角形与△ABC相似?若存在,求出点P的坐标;若不存在,请说明理由。
23.如图,二次函数的图像交轴于,交轴于,过画直线。
(1)求二次函数的解析式;
(2)若点P是抛物线上的动点,点Q是直线上的动点,请判断是否存在以P、Q、O、C为顶点的四边形为平行四边形,若存在,请求出点Q的坐标;若不存在,请说明理由;
(3)在轴右侧的点在二次函数图像上,以为圆心的圆与直线相切,切点为。且△CHM∽△AOC(点与点对应),求点的坐标。
24.如图,三角形是以为底边的等腰三角形,点、分别是一次函数的图象与轴、轴的交点,点在二次函数的图象上,且该二次函数图象上存在一点使四边形能构成平行四边形.
(1)试求、的值,并写出该二次函数表达式;
(2)动点沿线段从到,同时动点沿线段从到都以每秒1个单位的速度运动,问:
①当运动过程中能否存在?如果不存在请说明理由;如果存在请说明点的位置?
②当运动到何处时,四边形的面积最小?此时四边形的面积是多少?
25.(14分)如图,二次函数的图象与x轴相交于点A(﹣3,0)、B(1,0),与y轴相交于点C,点G是二次函数图象的顶点,直线GC交x轴于点H(3,0),AD平行GC交y轴于点D.
(1)求该二次函数的表达式;
(2)求证:四边形ACHD是正方形;
(3)如图2,点M(t,p)是该二次函数图象上的动点,并且点M在第二象限内,过点M的直线交二次函数的图象于另一点N.
①若四边形ADCM的面积为S,请求出S关于t的函数表达式,并写出t的取值范围;
②若△CMN的面积等于,请求出此时①中S的值.
26.如图,已知二次函数c为常数的图象经过点,点,顶点为点M,过点A作轴,交y轴于点D,交该二次函数图象于点B,连结BC.
求该二次函数的解析式及点M的坐标.
过该二次函数图象上一点P作y轴的平行线,交一边于点Q,是否存在点P,使得以点P、Q、C、O为顶点的四边形为平行四边形,若存在,求出P点坐标;若不存在,说明理由.
点N是射线CA上的动点,若点M、C、N所构成的三角形与相似,请直接写出所有点N的坐标直接写出结果,不必写解答过程.
27.如图,在平面直角坐标系中,二次函数的图像与轴交于、两点,与轴交于点,点是抛物线顶点,点是直线下方的抛物线上一动点.
()这个二次函数的表达式为____________.
()设直线的解析式为,则不等式的解集为___________.
()连结、,并把沿翻折,得到四边形,那么是否存在点,使四边形为菱形?若存在,请求出此时点的坐标;若不存在,请说明理由.
()当四边形的面积最大时,求出此时点的坐标和四边形的最大面积.
()若把条件“点是直线下方的抛物线上一动点.”改为“点是抛物线上的任一动点”,其它条件不变,当以、、、为顶点的四边形为梯形时,直接写出点的坐标.
28.如图,已知二次函数图象的顶点坐标为A(1,4),与坐标轴交于B、C、D三点,且B点的坐标为(-1,0).
(1)求二次函数的解析式;
(2)在二次函数图象位于x轴上方部分有两个动点M、N,且点N在点M的左侧,过M、N作x轴的垂线交x轴于点G、H两点,当四边形MNHG为矩形时,求该矩形周长的最大值.
2024年中考数学重难点题型之二次函数专题16 二次函数与正方形存在性问题(原卷版): 这是一份2024年中考数学重难点题型之二次函数专题16 二次函数与正方形存在性问题(原卷版),共19页。试卷主要包含了,与轴交于点,抛物线的顶点为,如图,已知抛物线经过,,三点等内容,欢迎下载使用。
中考数学二轮复习压轴题专题16二次函数的存在性问题(含解析): 这是一份中考数学二轮复习压轴题专题16二次函数的存在性问题(含解析),共106页。
初中数学中考复习 专题16二次函数的存在性问题(原卷版): 这是一份初中数学中考复习 专题16二次函数的存在性问题(原卷版),共19页。