初中数学中考复习 专题25圆的有关位置关系(共70题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第01期)
展开
这是一份初中数学中考复习 专题25圆的有关位置关系(共70题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第01期),共125页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2021年中考数学真题分项汇编【全国通用】(第01期)
专题25圆的有关位置关系(共70题)
一、单选题
1.(2021·浙江嘉兴市·中考真题)已知平面内有和点,,若半径为,线段,,则直线与的位置关系为( )
A.相离 B.相交 C.相切 D.相交或相切
【答案】D
【分析】
根据点与圆的位置关系的判定方法进行判断.
【详解】
解:∵⊙O的半径为2cm,线段OA=3cm,线段OB=2cm,
即点A到圆心O的距离大于圆的半径,点B到圆心O的距离等于圆的半径,
∴点A在⊙O外.点B在⊙O上,
∴直线AB与⊙O的位置关系为相交或相切,
故选:D.
【点睛】
本题考查了直线与圆的位置关系,正确的理解题意是解题的关键.
2.(2021·四川凉山彝族自治州·中考真题)下列命题中,假命题是( )
A.直角三角形斜边上的中线等于斜边的一半
B.等腰三角形顶角的平分线,底边上的中线,底边上的高相互重合
C.若,则点B是线段AC的中点
D.三角形三条边的垂直平分线的交点叫做这个三角形的外心
【答案】C
【分析】
根据中点的定义,直角三角形的性质,三线合一以及外心的定义分别判断即可.
【详解】
解:A、直角三角形斜边上的中线等于斜边的一半,故为真命题;
B、等腰三角形顶角的平分线,底边上的中线,底边上的高相互重合,故为真命题;
C、若在同一条直线上AB=BC,则点B是线段AC的中点,故为假命题;
D、三角形三条边的垂直平分线的交点叫做这个三角形的外心,故为真命题;
故选C.
【点睛】
本题考查了中点的定义,直角三角形的性质,三线合一以及外心的性质,属于基础知识,要熟练掌握.
3.(2021·山东泰安市·中考真题)如图,在中,,以点A为圆心,3为半径的圆与边相切于点D,与,分别交于点E和点G,点F是优弧上一点,,则的度数是( )
A.50° B.48° C.45° D.36°
【答案】B
【分析】
连接AD,由切线性质可得∠ADB=∠ADC=90°,根据AB=2AD及锐角的三角函数可求得∠BAD=60°,易求得∠ADE=72°,由AD=AE可求得∠DAE=36°,则∠GAC=96°,根据圆周角定理即可求得∠GFE的度数.
【详解】
解:连接AD,则AD=AG=3,
∵BC与圆A相切于点D,
∴∠ADB=∠ADC=90°,
在Rt△ADB中,AB=6,则cos∠BAD==,
∴∠BAD=60°,
∵∠CDE=18°,
∴∠ADE=90°﹣18°=72°,
∵AD=AE,
∴∠ADE=∠AED=72°,
∴∠DAE=180°﹣2×72°=36°,
∴∠GAC=36°+60°=96°,
∴∠GFE=∠GAC=48°,
故选:B.
【点睛】
本题考查切线性质、锐角的三角函数、等腰三角形的性质、三角形的内角和定理、圆周角定理,熟练掌握切线性质和圆周角定理,利用特殊角的三角函数值求得∠BAD=60°是解答的关键.
4.(2021·浙江金华市·中考真题)如图,在中,,以该三角形的三条边为边向形外作正方形,正方形的顶点都在同一个圆上.记该圆面积为,面积为,则的值是( )
A. B. C. D.
【答案】C
【分析】
先确定圆的圆心在直角三角形斜边的中点,然后利用全等三角形的判定和性质确定△ABC是等腰直角三角形,再根据直角三角形斜边中线的性质得到,再由勾股定理解得,解得,据此解题即可.
【详解】
解:如图所示,正方形的顶点都在同一个圆上,
圆心在线段的中垂线的交点上,即在斜边的中点,且AC=MC,BC=CG,
∴AG=AC+CG=AC+BC,BM=BC+CM=BC+AC,
∴AG=BM,
又∵OG=OM,OA=OB,
∴△AOG≌△BOM,
∴∠CAB=∠CBA,
∵∠ACB=90°,
∴∠CAB=∠CBA=45°,
,
,
.
故选:C.
【点睛】
本题考查勾股定理、直角三角形斜边的中线的性质、圆的面积、三角形的面积等知识,是重要考点,难度一般,掌握相关知识是解题关键.
5.(2021·浙江中考真题)如图,已知点是的外心,∠,连结,,则的度数是( ).
A. B. C. D.
【答案】C
【分析】
结合题意,根据三角形外接圆的性质,作;再根据圆周角和圆心角的性质分析,即可得到答案.
【详解】
的外接圆如下图
∵∠
∴
故选:C.
【点睛】
本题考查了圆的知识;解题的关键是熟练掌握三角形外接圆、圆周角、圆心角的性质,从而完成求解.
6.(2021·四川泸州市·)如图,⊙O的直径AB=8,AM,BN是它的两条切线,DE与⊙O相切于点E,并与AM,BN分别相交于D,C两点,BD,OC相交于点F,若CD=10,则BF的长是
A. B. C. D.
【答案】A
【分析】
过点D作DG⊥BC于点G,延长CO交DA的延长线于点H,根据勾股定理求得,即可得AD=BG=2,BC= 8,再证明△HAO≌△BCO,根据全等三角形的性质可得AH=BC=8,即可求得HD= 10;在Rt△ABD中,根据勾股定理可得;证明△DHF∽△BCF,根据相似三角形的性质可得,由此即可求得.
【详解】
过点D作DG⊥BC于点G,延长CO交DA的延长线于点H,
∵AM,BN是它的两条切线,DE与⊙O相切于点E,
∴AD=DE,BC=CE,∠DAB=∠ABC=90°,
∵DG⊥BC,
∴四边形ABGD为矩形,
∴AD=BG,AB=DG=8,
在Rt△DGC中,CD=10,
∴,
∵AD=DE,BC=CE,CD=10,
∴CD= DE+CE = AD+BC =10,
∴AD+BG +GC=10,
∴AD=BG=2,BC=CG+BG=8,
∵∠DAB=∠ABC=90°,
∴AD∥BC,
∴∠AHO=∠BCO,∠HAO=∠CBO,
∵OA=OB,
∴△HAO≌△BCO,
∴AH=BC=8,
∵AD=2,
∴HD=AH+AD=10;
在Rt△ABD中,AD=2,AB=8,
∴,
∵AD∥BC,
∴△DHF∽△BCF,
∴,
∴,
解得,.
故选A.
【点睛】
本题是圆的综合题,考查了切线长定理、勾股定理、全等三角形的判定及性质、相似三角形的判定于性质,熟练运用相关知识是解决问题的关键.
7.(2021·四川眉山市·中考真题)如图,在矩形中,对角线,相交于点,,,点在线段上从点至点运动,连接,以为边作等边三角形,点和点分别位于两侧,下列结论:①;②;③;④点运动的路程是,其中正确结论的序号为( )
A.①④ B.①②③ C.②③④ D.①②③④
【答案】B
【分析】
连接OE并延长交DC于点H,先证△ADO为等边三角形,得出∠2=∠DAF=60°,再根据△DEF为等边三角形,得出①正确;证出△DOE≌△COE,得到ED=EC,得出②正确;证出∠ADF=∠3,看得出③正确;根据△DOE≌△COE,得出点E在OH上运动,可得④正确.
【详解】
解:
连接OE并延长交DC于点H,
∵矩形ABCD,
∴OA=OD=OC,
∵∠DAC=60°,
∴△ADO为等边三角形,
∴∠2=∠DAF=60°,
∵△DEF为等边三角形,
∴∠1=60°=∠5,
∴∠1=∠2,
∴D、F、O、E四点共圆,
∴∠3=∠4,①正确;
∴∠5=∠6=60°,
∴∠7=∠6=60°,
∵OD=OC,OE=OE,
∴△DOE≌△COE,
∴∠3=∠8,
∴∠CDE=∠DCE,
∴ED=EC,②正确;
∵∠ADO=∠FDE=60°,
∴∠ADF=∠3,
∴∠ADF=∠8,即∠ADF=∠ECF,③正确;
∵△DOE≌△COE,
∴点E在∠DOC的角平分线上与CD的交点为H,即点E在OH上运动,
∴OH=BC,
∴OH=,④错误.
故选B.
【点睛】
本题考查了等边三角形的判定与性质,全等三角形的判定与性质,圆的性质,解题的关键是灵活运用这些性质.
8.(2021·湖北十堰市·中考真题)如图,内接于是的直径,若,则( )
A. B. C.3 D.4
【答案】C
【分析】
首先过点O作OF⊥BC于F,由垂径定理可得BF=CF=BC,然后由∠BAC=120°,AB=AC,利用等边对等角与三角形内角和定理,即可求得∠C与∠BAC的度数,由BD为⊙O的直径,即可求得∠BAD与∠D的度数,又由AD=3,即可求得BD的长,继而求得BC的长.
【详解】
解:过点O作OF⊥BC于F,
∴BF=CF=BC,
∵AB=AC,∠BAC=120°,
∴∠C=∠ABC=(180°−∠BAC)÷2=30°,
∵∠C与∠D是同弧所对的圆周角,
∴∠D=∠C=30°,
∵BD为⊙O的直径,
∴∠BAD=90°,
∴∠ABD=60°,
∴∠OBC=∠ABD−∠ABC=30°,
∵AD=3,
∴BD=AD÷cos30°=3÷=2,
∴OB=BD=,
∴BF=OB•cos30°=×=,
∴BC=3.
故选:C.
【点睛】
此题考查了圆周角定理、垂径定理、等腰三角形的性质、直角三角形的性质以及特殊角的三角函数值等知识.此题综合性较强,难度适中,解题的关键是注意数形结合思想的应用,注意准确作出辅助线.
9.(2021·湖南怀化市·中考真题)如图,在中,以A为圆心,任意长为半径画弧,分别交AB、AC于点M、N;再分别以M、N为圆心,大于的长为半径画弧,两弧交于点P;连结AP并延长交BC于点D.则下列说法正确的是( )
A. B.AD一定经过的重心
C. D.AD一定经过的外心
【答案】C
【分析】
根据题意易得AD平分∠BAC,然后根据三角形的重心、外心及三边关系可排除选项.
【详解】
解:∵AD平分∠BAC,
∴,故C正确;
在△ABD中,由三角形三边关系可得,故A错误;
由三角形的重心可知是由三角形三条中线的交点,所以AD不一定经过的重心,故B选项错误;
由三角形的外心可知是由三角形三条边的中垂线的交点,所以AD不一定经过的外心,故D选项错误;
故选C.
【点睛】
本题主要考查三角形的重心、外心及角平分线的尺规作图,熟练掌握三角形的重心、外心及角平分线的尺规作图是解题的关键.
10.(2021·山东临沂市·中考真题)如图,、分别与相切于、,,为上一点,则的度数为( )
A. B. C. D.
【答案】C
【分析】
由切线的性质得出∠OAP=∠OBP=90°,利用四边形内角和可求∠AOB=110°,再利用圆周角定理可求∠ADB=55°,再根据圆内接四边形对角互补可求∠ACB.
【详解】
解:如图所示,连接OA,OB,在优弧AB上取点D,连接AD,BD,
∵AP、BP是切线,
∴∠OAP=∠OBP=90°,
∴∠AOB=360°-90°-90°-70°=110°,
∴∠ADB=55°,
又∵圆内接四边形的对角互补,
∴∠ACB=180°-∠ADB=180°-55°=125°.
故选:C.
【点睛】
本题考查了切线的性质、圆周角定理、圆内接四边形的性质.解题的关键是连接OA、OB,求出∠AOB.
11.(2021·湖北鄂州市·中考真题)如图,中,,,.点为内一点,且满足.当的长度最小时,的面积是( )
A.3 B. C. D.
【答案】D
【分析】
由题意知,又长度一定,则点P的运动轨迹是以中点O为圆心,长为半径的圆弧,所以当B、P、O三点共线时,BP最短;在中,利用勾股定理可求BO的长,并得到点P是BO的中点,由线段长度即可得到是等边三角形,利用特殊三边关系即可求解.
【详解】
解:
取中点O,并以O为圆心,长为半径画圆
由题意知:当B、P、O三点共线时,BP最短
点P是BO的中点
在中,
是等边三角形
在中,
.
【点睛】
本题主要考察动点的线段最值问题、点与圆的位置关系和隐形圆问题,属于动态几何综合题型,中档难度.解题的关键是找到动点P的运动轨迹,即隐形圆.
12.(2021·四川广元市·中考真题)如图,在边长为2的正方形中,是以为直径的半圆的切线,则图中阴影部分的面积为( )
A. B. C.1 D.
【答案】D
【分析】
取BC的中点O,设AE与⊙O的相切的切点为F,连接OF、OE、OA,由题意可得OB=OC=OA=1,∠OFA=∠OFE=90°,由切线长定理可得AB=AF=2,CE=CF,然后根据割补法进行求解阴影部分的面积即可.
【详解】
解:取BC的中点O,设AE与⊙O的相切的切点为F,连接OF、OE、OA,如图所示:
∵四边形ABCD是正方形,且边长为2,
∴BC=AB=2,∠ABC=∠BCD=90°,
∵是以为直径的半圆的切线,
∴OB=OC=OF=1,∠OFA=∠OFE=90°,
∴AB=AF=2,CE=CF,
∵OA=OA,
∴Rt△ABO≌Rt△AFO(HL),
同理可证△OCE≌△OFE,
∴,
∴,
∴,
∴,
∴,
∴,
∴;
故选D.
【点睛】
本题主要考查切线的性质定理、切线长定理、正方形的性质及相似三角形的性质与判定,熟练掌握切线的性质定理、切线长定理、正方形的性质及相似三角形的性质与判定是解题的关键.
13.(2021·江苏连云港市·中考真题)如图,正方形内接于,线段在对角线上运动,若的面积为,,则周长的最小值是( )
A.3 B.4 C.5 D.6
【答案】B
【分析】
利用将军饮马之造桥选址的数学方法进行计算.
【详解】
如图所示,
(1)为上一动点,点关于线段的对称点为点,连接,则,过点作的平行线,过点作的平行线,两平行线相交于点,与相交于点M.
四边形是平行四边形
则
(2)找一点, 连接,则,过点作的平行线,连接则.
此时
(1)中周长取到最小值
四边形是平行四边形
四边形是正方形
,
又,,
又
是等腰三角形
,则圆的半径,
故选:B.
【点睛】
本题难度较大,需要具备一定的几何分析方法.关键是要找到周长取最小值时的位置.
14.(2021·贵州贵阳市·中考真题)如图,与正五边形的两边相切于两点,则的度数是( )
A. B. C. D.
【答案】A
【分析】
根据切线的性质,可得∠OAE=90°,∠OCD=90°,结合正五边形的每个内角的度数为108°,即可求解.
【详解】
解: ∵AE、CD切⊙O于点A、C,
∴∠OAE=90°,∠OCD=90°,
∴正五边形ABCDE的每个内角的度数为: ,
∴∠AOC=540°−90°−90°−108°−108°=144°,
故选:A.
【点睛】
本题主要考查正多边形的内角和公式的应用,以及切线的性质定理,掌握正多边形的内角和定理是解题的关键.
15.(2021·广东中考真题)设O为坐标原点,点A、B为抛物线上的两个动点,且.连接点A、B,过O作于点C,则点C到y轴距离的最大值( )
A. B. C. D.1
【答案】A
【分析】
设A(a,a²),B(b,b²),求出AB的解析式为,进而得到OD=1,由∠OCB=90°可知,C点在以OD的中点E为圆心,以为半径的圆上运动,当CH为圆E半径时最大,由此即可求解.
【详解】
解:如下图所示:过C点作y轴垂线,垂足为H,AB与x轴的交点为D,
设A(a,a²),B(b,b²),其中a≠0,b≠0,
∵OA⊥OB,
∴,
∴,
即,
,
设AB的解析式为:,代入A(a,a²),
解得:,
∴,
∵,即 ,
∴C点在以OD的中点E为圆心,以为半径的圆上运动,
当CH为圆E的半径时,此时CH的长度最大,
故CH的最大值为,
故选:A.
【点睛】
本题考查了二次函数的性质,圆的相关知识等,本题的关键是求出AB与y轴交点的纵坐标始终为1,结合,由此确定点E的轨迹为圆进而求解.
16.(2021·湖南娄底市·中考真题)如图,直角坐标系中,以5为半径的动圆的圆心A沿x轴移动,当⊙与直线只有一个公共点时,点A的坐标为( )
A. B. C. D.
【答案】D
【分析】
当⊙与直线只有一个公共点时,则此时⊙A与直线相切,(需考虑左右两侧相切的情况);设切点为,此时点同时在⊙A与直线上,故可以表示出点坐标,过点作,则此时,利用相似三角形的性质算出长度,最终得出结论.
【详解】
如下图所示,连接,过点作,
此时点坐标可表示为,
∴,,
在中,,
又∵半径为5,
∴,
∵,
∴,
则,
∴,
∴,
∵左右两侧都有相切的可能,
∴A点坐标为,
故选:D.
【点睛】
本题考查的是直线与圆的位置关系,熟知相似三角形的判定与性质是解答此题的关键.
17.(2021·福建中考真题)如图,为的直径,点P在的延长线上,与相切,切点分别为C,D.若,则等于( )
A. B. C. D.
【答案】D
【分析】
连接OC,CP,DP是⊙O的切线,根据定理可知∠OCP=90°,∠CAP=∠PAD,利用三角形的一个外角等于与其不相邻的两个内角的和可求∠CAD=∠COP,在Rt△OCP中求出即可.
【详解】
解:连接OC,
CP,DP是⊙O的切线,则∠OCP=90°,∠CAP=∠PAD,
∴∠CAD=2∠CAP,
∵OA=OC
∴∠OAC=∠ACO,
∴∠COP=2∠CAO
∴∠COP=∠CAD
∵
∴OC=3
在Rt△COP中,OC=3,PC=4
∴OP=5.
∴==
故选:D.
【点睛】
本题利用了切线的性质,锐角三角函数,三角形的外角与内角的关系求解.
18.(2021·山西中考真题)如图,在中,切于点,连接交于点,过点作交于点,连接.若,则为( )
A. B. C. D.
【答案】B
【分析】
连接,根据与相切易得,在中,已知,可以求出的度数,根据同弧所对的圆周角是圆心角的一半得出的度数,最后根据可得.
【详解】
如下图,连接,
∵切于点,
∴,
在中,
∵,
∴,
∴,
又∵,
∴.
故选:B.
【点睛】
本题考察了切线的性质,圆周角定理以及平行线的性质,综合运用以上性质定理是解题的关键.
19.(2021·吉林长春市·中考真题)如图,AB是的直径,BC是的切线,若,则的大小为( )
A. B. C. D.
【答案】C
【分析】
根据切线的性质,得∠ABC=90°,再根据直角三角形的性质,即可求解.
【详解】
解:∵AB是的直径,BC是的切线,
∴AB⊥BC,即∠ABC=90°,
∵,
∴=90°-35°=55°,
故选C.
【点睛】
本题主要考查切线的性质以及直角三角形的性质,掌握圆的切线的性质定理,是解题的关键.
20.(2021·上海中考真题)如图,已知长方形中,,圆B的半径为1,圆A与圆B内切,则点与圆A的位置关系是( )
A.点C在圆A外,点D在圆A内 B.点C在圆A外,点D在圆A外
C.点C在圆A上,点D在圆A内 D.点C在圆A内,点D在圆A外
【答案】C
【分析】
根据内切得出圆A的半径,再判断点D、点E到圆心的距离即可
【详解】
∵圆A与圆B内切,,圆B的半径为1
∴圆A的半径为5
∵
相关试卷
这是一份专题24 圆的有关位置关系(共45题)--2023年中考数学真题分项汇编(全国通用),文件包含圆的有关位置关系共45题解析版pdf、圆的有关位置关系共45题学生版pdf等2份试卷配套教学资源,其中试卷共64页, 欢迎下载使用。
这是一份专题24 圆的有关位置关系(共45题)-2023年全国各地中考数学真题分项汇编(全国通用),文件包含专题24圆的有关位置关系共45题原卷版docx、专题24圆的有关位置关系共45题解析版docx等2份试卷配套教学资源,其中试卷共89页, 欢迎下载使用。
这是一份专题24 圆的有关位置关系(共45题)-备战2024年数学中考之真题分项汇编(全国通用),文件包含专题24圆的有关位置关系共45题原卷版docx、专题24圆的有关位置关系共45题解析版docx等2份试卷配套教学资源,其中试卷共89页, 欢迎下载使用。