初中数学中考复习 专题29 投影与视图(解析版)
展开专题29 投影与视图
知识点一:与投影有关的基本概念
1.投影:用光线照射物体,在某个平面上得到的影子叫做物体的投影。
2.平行投影:由平行光线形成的投影是平行投影。
3.中心投影:由同一点发出的光线形成的投影叫做中心投影。
4.正投影:投影线垂直于投影面产生的投影叫做正投影。
知识点二:与视图有关的基本概念
1.视图:从某一方向观察一个物体时,所看到的平面图形叫做物体的一个视图。
视图可以看作物体在某一方向光线下的正投影。
2.主视图、俯视图、左视图
(1)对一个物体在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图;
(2)在水平面内得到的由上向下观察物体的视图,叫做俯视图;
(3)在侧面内得到的由左向右观察物体的视图,叫做左视图。
主视图与俯视图的长对正;主视图与左视图的高平齐;左视图与俯视图的宽相等。
知识点三:视图知识的应用
1.通过三视图制作立体模型的实践活动,体验平面图形向立体图形转化的过程,体会三视图表示立体图形的作用,进一步感受立体图形与平面图形之间的联系。
2.由三视图判断几何体形状主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.
本章内容要求学生经历实践探索,了解投影、投影面、平行投影和中心投影的概念。通过下面知识导图加深对本章内容的了解。
【例题1】一位小朋友拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上的影子
不可能是( )
A B C D
【答案】B.
【解析】本题主要考查对平行投影的理解和掌握,能熟练地观察图形得出正确结论是解此题的关键.根据看等边三角形木框的方向即可得出答案.竖直向下看可得到线段,沿与平面平行的方向看可得到C,延与平面不平行的方向看可得到D,不论如何看都得不到一点.
【例题2】(2020广元)如图所示的几何体是由5个相同的小正方体组成,其主视图为( )
A. B. C. D.
【答案】D
【解析】
根据从正面看得到的图形是主视图,可得答案.
从正面看第一层是一个小正方形,第二层是三个小正方形,
∴主视图为:
【点拨】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.
【例题3】(2020湖南岳阳)如图,由4个相同正方体组成的几何体,它的左视图是( )
A. B.
C. D.
【答案】A
【解析】根据左视图是从左面看得到的图形,结合所给图形以及选项进行求解即可.
观察图形,从左边看得到两个叠在一起的正方形,如下图所示:
【点拨】本题考查了简单几何体的三视图,解题的关键是掌握左视图的观察位置.
【例题4】(2020苏州)如图,一个几何体由5个相同的小正方体搭成,该几何体的俯视图是( )
A. B. C. D.
【答案】C
【解析】根据组合体的俯视图是从上向下看的图形,即可得到答案.
组合体从上往下看是横着放的三个正方形.
【点拨】本题主要考查组合体三视图,熟练掌握三视图的概念,是解题的关键.
《投影与视图》单元精品检测试卷
本套试卷满分120分,答题时间90分钟
一、选择题(每小题3分,共30分)
1.(2020成都)如图所示的几何体是由4个大小相同的小立方块搭成,其左视图是( )
A. B. C. D.
【答案】D
【解析】根据左视图的定义“从主视图的左边往右边看得到的视图就是左视图”进一步分析即可得到答案.
【详解】从主视图的左边往右边看得到的视图为:
【点拨】本题考查了左视图的识别,熟练掌握相关方法是解题关键.
2.(2020山东济宁)已知某几何体的三视图(单位:cm)如图所示,则该几何体的侧面积等于( )
A. 12πcm2 B. 15πcm2 C. 24πcm2 D. 30πcm2
【答案】B
【解析】由三视图可知这个几何体是圆锥,高是4cm,底面半径是3cm,所以母线长是(cm),∴侧面积=π×3×5=15π(cm2),故选B.
3.(2020山东菏泽)一个几何体由大小相同的小立方块搭成,它的俯视图如图所示,其中小正方形中的数字表示在该位置小立方块的个数,则该几何体的主视图为( )
A. B. C. D.
【答案】A
【解析】从正面看,注意“长对正,宽相等、高平齐”,根据所放置的小立方体的个数判断出主视图图形即可.
从正面看所得到的图形为选项中的图形.
【点拨】考查几何体的三视图的知识,从正面看的图形是主视图,从左面看到的图形是左视图,从上面看到的图象是俯视图.掌握以上知识是解题的关键.
4.(2020哈尔滨)五个大小相同的正方体塔成的几何体如图所示,其左视图是( )
A. B. C. D.
【答案】C
【解析】根据从左边看得到的图形是左视图,可得答案.
从左边看第一层有两个小正方形,第二层右边有一个小正方形,
【点拨】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.
5.(2020河南)如下摆放的几何体中,主视图与左视图有可能不同的是( )
A. B.
C. D.
【答案】D
【解析】分别确定每个几何体的主视图和左视图即可作出判断.
A.圆柱的主视图和左视图都是长方形,故此选项不符合题意;
B.圆锥的主视图和左视图都是三角形,故此选项不符合题意;
C.球的主视图和左视图都是圆,故此选项不符合题意;
D.长方体的主视图是长方形,左视图可能是正方形,故此选项符合题意,
【点拨】本题考查了简单几何体的三视图,熟练掌握确定三视图的方法是解答的关键.
6.(2020甘肃武威)下列几何体中,其俯视图与主视图完全相同的是( )
A. B. C. D.
【答案】C
【解析】俯视图是指从上面往下看,主视图是指从前面往后面看,根据定义逐一分析即可求解.
选项A:俯视图是圆,主视图是三角形,故选项A错误;
选项B:俯视图是圆,主视图是长方形,故选项B错误;
选项C:俯视图是正方形,主视图是正方形,故选项C正确;
选项D:俯视图是三角形,主视图是长方形,故选项D错误.
【点拨】本题考查了视图,主视图是指从前面往后面看,俯视图是指从上面往下看,左视图是指从左边往右边看,熟练三视图的概念即可求解.
7.(2020福建)如图所示的六角螺母,其俯视图是( )
A. B. C. D.
【答案】B
【解析】根据图示确定几何体的三视图即可得到答案.
由几何体可知,该几何体的三视图依次为.
主视图为:
左视图为:
俯视图为:
【点拨】此题考查简单几何体的三视图,掌握三视图的视图方位及画法是解题的关键.
8.(2020新疆兵团)如图所示,该几何体的俯视图是( )
A. B. C. D.
【答案】C
【解析】根据俯视图是从上边看的到的视图,可得答案.
从上边可以看到4列,每列都是一个小正方形,故C符合题意;
【点拨】本题考查了简单组合体的三视图,从上边看的到的视图是俯视图.掌握俯视图的含义是解题的关键.
9.(2020贵州黔东南)桌上摆着一个由若干个相同的小正方体组成的几何体,其主视图和左视图如图所示,则组成这个几何体的小正方体的个数最多有( )
A. 12个 B. 8个 C. 14个 D. 13个
【答案】D
【解析】易得此几何体有三行,三列,判断出各行各列最多有几个正方体组成即可.
底层正方体最多有9个正方体,第二层最多有4个正方体,所以组成这个几何体的小正方体的个数最多有13个.
【点拨】本题考查了由三视图判断几何体的知识,解决本题的关键是利用“主视图疯狂盖,左视图拆违章”找到所需正方体的个数.
10.(2020贵州黔西南)如图,由6个相同的小正方体组合成一个立体图形,它的俯视图为( )
A. B. C. D.
【答案】D
【解析】找到从上面看所得到的图形即可.
解:从上面看可得四个并排的正方形,如图所示:
【点拨】本题考查了三视图的知识,.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.
二、填空题(每空3分,共30分)
11.三棱柱的三视图如图所示,已知△EFG中,EF=8cm,EG=12cm,∠EFG=45°.则AB的长为 cm.
【答案】4.
【解析】根据三视图的对应情况可得出,△EFG中FG上的高即为AB的长,进而求出即可.过点E作EQ⊥FG于点Q,
由题意可得出:EQ=AB,
∵EF=8cm,∠EFG=45°,
∴EQ=AB=×8=4(cm)
12.如图所示,一个空间几何体的主视图和左视图都是边长为l的正三角形,俯视图是一个圆及圆心,那么这个几何体的侧面积是 .
【答案】见解析。
【解析】本题主要考查由三视图到立体图形,以及立体图形的侧面展开图和扇形面积公式.
这个几何体为圆锥,底面圆的半径为,侧面展开图为扇形,扇形的半径为圆锥的母线长1,扇形的弧长为2π×=π,由扇形的面积公式S=lR得这个几何体的侧面积为S=×1×π=.故填号 .
13.如图是某几何体的三视图,则该几何体的体积是 .
【答案】
【解析】本题考查了由三视图求原几何体的体积,正确恢复原几何体是解决问题的关键
由三视图可看出:该几何体是﹣个正六棱柱,其中底面正六边形的边长为6,高是2,
所以该几何体的体积=6××62×2=108.
14.下列几何体的左视图为长方形的是 .
A. B. C. D.
【答案】C.
【解析】找到个图形从左边看所得到的图形即可得出结论.
A.球的左视图是圆;
B.圆台的左视图是梯形;
C.圆柱的左视图是长方形;
D.圆锥的左视图是三角形.
15.把图1中的正方体的一角切下后摆在图2所示的位置,则图2中的几何体的主视图为 .
A. B. C. D.
【答案】D.
【解析】根据从正面看得到的图形是主视图,可得答案.从正面看是一个等腰三角形,高线是虚线.
16.三棱柱的三视图如图,△EFG中,EF=8cm,EG=12cm,∠EGF=30°,则AB的长为 cm.
【答案】6.
【解析】考点是由三视图判断几何体.根据三视图的对应情况可得出,△EFGFG上的高即为AB的长,进而求出即可.
过点E作EQ⊥FG于点Q,由题意可得出:FQ=AB,
∵EG=12cm,∠EGF=30°,∴EQ=AB=×12=6(cm).
17.已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的侧面积为 .
【答案】108.
【解析】观察该几何体的三视图发现该几何体为正六棱柱,其底面边长为3,高为6,
所以其侧面积为3×6×6=108
18.一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了9个小立方块,它的主视图和左视图如图所示,那么这个几何体的搭法共有 种.
【答案】10.
【解析】先根据主视图确定每一列最大分别为4,2,3,再根据左视确定每一行最大分别为4,3,2,总和要保证为16,还要保证俯视图有9个位置.
设俯视图有9个位置分别为:
由主视图和左视图知:①第1个位置一定是4,第6个位置一定是3;
②一定有2个2,其余有5个1;
③最后一行至少有一个2,当中一列至少有一个2;
根据2的排列不同,这个几何体的搭法共有10种:如下图所示:
19.已知一个圆锥体的三视图如图所示,则这个圆锥体的侧面积为 .
【答案】20π
【解析】先利用三视图得到底面圆的半径为4,圆锥的高为3,再根据勾股定理计算出母线长l为5,然后根据圆锥的侧面积公式:S侧=πrl代入计算即可.根据三视图得到圆锥的底面圆的直径为8,即底面圆的半径r为4,圆锥的高为3,
所以圆锥的母线长l==5,
所以这个圆锥的侧面积是π×4×5=20π.
20.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中数据计算,这个几何体的表面积为 cm2.
【答案】16π.
【解析】由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;
根据三视图知:该圆锥的母线长为6cm,底面半径为2cm,
故表面积=πrl+πr2=π×2×6+π×22=16π(cm2).
三、解答题(5个小题,每题12分,共60分)
21.某兴趣小组开展课外活动.如图,A,B两地相距12米,小明从点A出发沿AB方向匀速前进,2秒后到达点D,此时他(CD)在某一灯光下的影长为AD,继续按原速行走2秒到达点F,此时他在同一灯光下的影子仍落在其身后,并测得这个影长为1.2米,然后他将速度提高到原来的1.5倍,再行走2秒到达点H,此时他(GH)在同一灯光下的影长为BH(点C,E,G在一条直线上).
(1)请在图中画出光源O点的位置,并画出他位于点F时在这个灯光下的影长FM(不写画法);
(2)求小明原来的速度.
【答案】(1)作图见试题解析;(2)1.5m/s.
【解析】本体考点有相似三角形的应用和中心投影.
(1)如图,
(2)设小明原来的速度为xm/s,
则CE=2xm,AM=AF﹣MF=(4x﹣1.2)m,
EG=2×1.5x=3xm,
BM=AB﹣AM=12﹣(4x﹣1.2)=13.2﹣4x,
∵点C,E,G在一条直线上,CG∥AB,
∴△OCE∽△OAM,△OEG∽△OMB,
∴,,
∴,
即,
解得x=1.5,经检验x=1.5为方程的解,
∴小明原来的速度为1.5m/s.
22.如图所示,某校墙边有甲、乙两根木杆,如果乙木杆的影子刚好不落在墙上,
AB=5 m,BC=3 m
(1)请你画出此时DE在阳光下的投影;
(2)若同时测量出DE在阳光下的投影长为6 m,请你计算DE的长.
【答案】见解析。
【解析】(1)作直线AC,过D作AC的平行线交BC于F,EF即为DE在阳光下的投影(图略).
(2)由题意得EF=6 m,又∵AC∥DF,∴△ABC∽△DEF,
∴,
∴,
DE=10 m.
故DE长10 m.
23.如图,在一面与地面垂直的围墙的同侧有一根高10米的旗杆AB和一根高度未知的电线杆CD,它们都与地面垂直,为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10米,而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米,依据这些数据,该小组的同学计算出了电线杆的高度.
(1)该小组的同学在这里利用的是 投影的有关知识进行计算的;
(2)试计算出电线杆的高度,并写出计算的过程.
【答案】(1)平行;(2)7.
【解析】考点有相似三角形的应用和平行投影.
(1)该小组的同学在这里利用的是平行投影的有关知识进行计算的;
(2)过点E作EM垂直AB于M, 过点G作GN垂直CD于N,则MB=EF=2,ND=GH=3,ME=BF=10,NG=DH=5.
所以AM=10-2=8,
由平行投影可知
AM/ME=CN/NG, 8/10=(CD-3)/5
CD=7
所以电线杆的高度为7米。
24.图(1)是一个蒙古包的照片,这个蒙古包可以近似看成是圆锥和圆柱组成的几何体,如图(2)所示.图(3)是这个几何体的正面示意图,已知蒙古包的顶部离地面的高度EO1=6米,圆柱部分的高OO1=4米,底面圆的直径BC=8米,求∠EAO的度数(结果精确到0.1°).
【答案】26.6°.
【解析】连接EO1,如图所示,
∵EO1=6米,OO1=4米,
∴EO=EO1﹣OO1=6﹣4=2米,
∵AD=BC=8米,
∴OA=OD=4米,
在Rt△AOE中,
tan∠EAO=,
则∠EAO≈26.6°.
25.如图所示的是一个几何体的三视图.
(1)写出这个几何体的名称;
(2)根据所示数据计算这个几何体的表面积;
(3)如果一只蚂蚁要从这个几何体中的点B出发,沿表面爬到AC的中点D,请你求出这个线路的最短路程.
【答案】见解析。
【解析】(1)圆锥.
(2)表面积S=S扇形+S圆=πrl+πr2
=12π+4π=16π(平方厘米).
(3)如图右图所示,将圆锥侧面展开,线段BD为所求的最短路程.
由条件得∠BAB′=120°,C为弧BB′的中点,所以BD=3
中考数学一轮复习考点梳理+单元突破练习专题29 投影与视图(教师版): 这是一份中考数学一轮复习考点梳理+单元突破练习专题29 投影与视图(教师版),共20页。试卷主要包含了投影,平行投影,中心投影,正投影等内容,欢迎下载使用。
【中考一轮复习】2023年中考数学人教版单元检测卷——专题29 投影与视图(原卷版+解析版): 这是一份【中考一轮复习】2023年中考数学人教版单元检测卷——专题29 投影与视图(原卷版+解析版),共1页。
初中数学中考复习 专题60投影与视图-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版): 这是一份初中数学中考复习 专题60投影与视图-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版),共71页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。