初中数学中考复习 专题29(新疆乌鲁木齐市专用)(解析版)-2021年31个地区中考数学精品模拟试卷
展开2021年新疆乌鲁木齐市中考数学精品模拟试卷
(满分150分,答题时间120分钟)
一、选择题(本大题共10小题,每小题4分,共40分。每题的选项中只有一项符合题目要求,请在答题卡的相应位置填涂正确选项)
1.﹣7的倒数是( )
A.7 B. C.﹣ D.﹣7
【答案】C
【解析】本题考查了倒数的定义,要求熟练掌握.需要注意的是,倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.
根据倒数的定义解答即可.
﹣7的倒数是﹣.
2.将一副三角尺如图摆放,点E在上,点D在的延长线上,则的度数是( )
A. 15° B. 20° C. 25° D. 30°
【答案】A
【解析】根据三角板的特点可知∠ACB=45°、∠DEF=30°,根据可知∠CEF=∠ACB=45°,最后运用角的和差即可解答.
由三角板的特点可知∠ACB=45°、∠DEF=30°
∵
∴∠CEF=∠ACB=45°,
∴∠CED=∠CEF-∠DEF=45°-30°=15°.
3.下列各运算中,计算正确的是( )
A.a2+2a2=3a4 B.x8﹣x2=x6
C.(x﹣y)2=x2﹣xy+y2 D.(﹣3x2)3=﹣27x6
【答案】D
【解析】据合并同类项法则,完全平方公式,幂的乘方和积的乘方分别求出每个式子的值,再判断即可.
A.结果是3a2,故本选项不符合题意;
B.x8和﹣x2不能合并,故本选项不符合题意;
C.结果是x2﹣2xy+y2,故本选项不符合题意;
D.结果是﹣27x6,故本选项符合题意;
4.如图是由4个相同的小正方体组成的立体图形,它的俯视图为( )
A. B. C. D.
【答案】C
【解析】根据俯视图是从立体图形上方看得到的图形解答即可.
这个由4个相同的小正方体组成的立体图形:从上方可以看到前后两排正方形,后排有两个正方形,前排左边有一个正方形,即C选项符合.
5.小红连续5天的体温数据如下(单位:℃):36.6,36.2,36.5,36.2,36.3.关于这组数据,下列说法正确的是( )
A.中位数是36.5℃ B.众数是36.2°C
C.平均数是36.2℃ D.极差是0.3℃
【答案】B
【解析】根据中位数、众数、平均数、极差的计算方法,分别求出结果即可.
把小红连续5天的体温从小到大排列得,36.2,36.2,36.3.36.5,36.6,
处在中间位置的一个数是36.3℃,因此中位数是36.3℃;
出现次数最多的是36.2℃,因此众数是36.2℃;
平均数为:x=(36.2+36.2+36.3+36.5+36.6)÷5=36.36℃,
极差为:36.6﹣36.2=0.4℃
6. 如图,圆内接正六边形的边长为4,以其各边为直径作半圆,则图中阴影部分的面积为( )
A.243-4π B.123+4π C.243+8π D.243+4π
【答案】A
【分析】设正六边形的中心为O,连接OA,OB首先求出弓形AmB的面积,再根据S阴=6•(S半圆﹣S弓形AmB)求解即可.
【解析】设正六边形的中心为O,连接OA,OB.
由题意,OA=OB=AB=4,
∴S弓形AmB=S扇形OAB﹣S△AOB=60⋅π⋅42360-34×42=83π﹣43,
∴S阴=6•(S半圆﹣S弓形AmB)=6•(12•π•22-83π+43)=243-4π,
7.如图,在3×3的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,若BD是△ABC的高,则BD的长为( )
A.101313 B.91313 C.81313 D.71313
【答案】D
【解析】根据勾股定理计算AC的长,利用面积差可得三角形ABC的面积,由三角形的面积公式即可得到结论.
由勾股定理得:AC=22+32=13,
∵S△ABC=3×3-12×1×2-12×1×3-12×2×3=3.5,
∴12AC⋅BD=72,
∴13⋅BD=7,
∴BD=71313
8.随着5G网络技术的发展,市场对5G产品的需求越来越大,为满足市场需求,某大型5G产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同.设更新技术前每天生产x万件产品,依题意得( )
A.400x-30=500x B.400x=500x+30
C.400x=500x-30 D.400x+30=500x
【答案】B
【分析】设更新技术前每天生产x万件产品,则更新技术后每天生产(x+30)万件产品,根据工作时间=工作总量÷工作效率结合现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同,即可得出关于x的分式方程,此题得解.
【解析】设更新技术前每天生产x万件产品,则更新技术后每天生产(x+30)万件产品,
依题意,得:400x=500x+30.
9.如图,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,则点A的对应点A′的坐标是( )
A.(0,4) B.(2,﹣2) C.(3,﹣2) D.(﹣1,4)
【答案】D
【解析】根据平移和旋转的性质,将△ABC先向上平移1个单位,再绕点P按逆时针方向旋转90°,得到△A′B′C′,即可得点A的对应点A′的坐标.
如图,
△A′B′C′即为所求,
则点A的对应点A′的坐标是(﹣1,4).
10.如图,点A是反比例函数y=6x(x>0)上的一点,过点A作AC⊥y轴,垂足为点C,AC交反比例函数y=2x的图象于点B,点P是x轴上的动点,则△PAB的面积为( )
A.2 B.4 C.6 D.8
【答案】A
【解析】连接OA、OB、PC.由于AC⊥y轴,根据三角形的面积公式以及反比例函数比例系数k的几何意义得到S△APC=S△AOC=3,S△BPC=S△BOC=1,然后利用S△PAB=S△APC﹣S△APB进行计算.
如图,连接OA、OB、PC.
∵AC⊥y轴,
∴S△APC=S△AOC=12×|6|=3,S△BPC=S△BOC=12×|2|=1,
∴S△PAB=S△APC﹣S△BPC=2.
故选:A.
二、填空题(本大题共5小题,每小题4分,共20分。把答案直接填在答题卡的相应位置处)
11.不等式组的解集为_______.
【答案】
【解析】分别求出各不等式的解集,再求出其公共解集即可.
解:
由①得:,
由②得:,
∴不等式组的解集为:,
故答案为:.
12. 如图,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,点A,C,D依次在同一直线上,且AB∥DE.
连结AE,当BC=5,AC=12时,则AE的长为________.
【答案】13
【解析】(1)∵
∴
在△ABC和△DCE中
∴△ABC≌△DCE
(2)由(1)可得BC=CE=5
在直角三角形ACE中
13.如图,有一些写有号码的卡片,它们的背面都相同,现将它们背面朝上,从中任意摸出一张,摸到1号卡片的概率是______.
【答案】
【解析】根据概率公式直接求解即可.
∵共有6张卡片,其中写有1号的有3张,
∴从中任意摸出一张,摸到1号卡片的概率是=。
14.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为____.
【答案】
【解析】
,解得r=.
15.已知抛物线经过点(1,﹣2),(﹣2,13).若(5,),(m,)是抛物线上不同的两点,且,则m的值为______.
【答案】-1
【解析】(1)∵抛物线经过点(1,-2),(-2,13),
∴,解得,
∴a的值为1,b的值为-4;
(2)∵(5,),(m,)是抛物线上不同的两点,
∴,解得或(舍去)
∴m的值为-1.
三、解答题(本大题包括Ⅰ-Ⅴ题,共9小题,共90分.解答时应在答题卡的相应位置处写出文字说明、证明过程或演算过程)
Ⅰ.(本题满分16分,第16,17题每题8分)
16.(8分)计算.
【答案】5
【解析】直接利用二次根式的性质和零指数幂的性质、绝对值的性质分别化简得出答案.
原式=3+3﹣1=5.
17.(8分)先化简,再从,,0,1,2中选一个合适的数作为x的值代入求值.
【答案】,-1.
【解析】先化简分式,然后在确保分式有意义的前提下,确定x的值并代入计算即可.
解:
=
=
=
=
=
=
在、、0、1、2中只有当x=-2时,原分式有意义,即x只能取-2
当x=-2时,.
Ⅱ.(本题满分30分,第18,19,20题每题10分)
18.(10分)去年某商店“十一黄金周”进行促销活动期间,前六天的总营业额为450万元,第七天的营业额是前六天总营业额的12%.
(1)求该商店去年“十一黄金周”这七天的总营业额;
(2)去年,该商店7月份的营业额为350万元,8、9月份营业额的月增长率相同,“十一黄金周”这七天的总营业额与9月份的营业额相等.求该商店去年8、9月份营业额的月增长率.
【答案】见解析。
【分析】(1)根据该商店去年“十一黄金周”这七天的总营业额=前六天的总营业额+第七天的营业额,即可求出结论;
(2)设该商店去年8、9月份营业额的月增长率为x,根据该商店去年7月份及9月份的营业额,即可得出关于x的一元二次方程,解之取其正值即可得出结论.
【解析】(1)450+450×12%=504(万元).
答:该商店去年“十一黄金周”这七天的总营业额为504万元.
(2)设该商店去年8、9月份营业额的月增长率为x,
依题意,得:350(1+x)2=504,
解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).
答:该商店去年8、9月份营业额的月增长率为20%.
19.(10分)如图,在平行四边形中,对角线与交于点O,点M,N分别为、的中点,延长至点E,使,连接.
(1)求证:;
(2)若,且,,求四边形的面积.
【答案】(1)见解析;(2)24
【解析】(1)由四边形ABCD是平行四边形得出AB=CD,ABCD,进而得到∠BAC=∠DCA,再结合AO=CO,M,N分别是OA和OC中点即可求解;
(2)证明△ABO是等腰三角形,结合M是AO的中点,得到∠BMO=∠EMO=90°,同时△DOC也是等腰三角形,N是OC中点,得到∠DNO=90°,得到EMDN,再由(1)得到EM=DN,得出四边形EMND为矩形,进而求出面积.
解:(1)证明:∵四边形ABCD是平行四边形,
∴AB=CD,ABCD,OA=OC,
∴∠BAC=∠DCA,
又点M,N分别为、的中点,
∴,
在和中,
,
∴.
(2)BD=2BO,又已知BD=2AB,
∴BO=AB,∴△ABO为等腰三角形;
又M为AO的中点,
∴由等腰三角形的“三线合一”性质可知:BM⊥AO,
∴∠BMO=∠EMO=90°,
同理可证△DOC也为等腰三角形,
又N是OC的中点,
∴由等腰三角形的“三线合一”性质可知:DN⊥CO,
∠DNO=90°,
∵∠EMO+∠DNO=90°+90°=180°,
∴EMDN,
又已知EM=BM,由(1)中知BM=DN,
∴EM=DN,
∴四边形EMND为平行四边形,
又∠EMO=90°,∴四边形EMND为矩形,
在Rt△ABM中,由勾股定理有:,
∴AM=CN=3,
∴MN=MO+ON=AM+CN=3+3=6,
∴.
故答案为:.
【点睛】本题考查了平行四边形的性质、矩形的判定和性质、矩形的面积公式等,熟练掌握其性质和判定方法是解决此类题的关键.
20.(10分)
共抓长江大保护,建设水墨丹青新岳阳,推进市中心城区污水系统综合治理项目,需要从如图A,B两地向C地新建AC,BC两条笔直的污水收集管道,现测得C地在A地北偏东45°方向上,在B地北偏西68°向上,AB的距离为7km,求新建管道的总长度.(结果精确到0.1km,sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,2≈1.41)
【答案】见解析。
【分析】过点C作CD⊥AB于点D,根据锐角三角函数即可求出新建管道的总长度.
【解析】如图,过点C作CD⊥AB于点D,
根据题意可知:
AB=7,∠ACD=45°,∠CBD=90°﹣68°=22°,
∴AD=CD,
∴BD=AB﹣AD=7﹣CD,
在Rt△BCD中,
∵tan∠CBD=CDBD,
∴CD7-CD≈0.40,
∴CD=2,
∴AD=CD=2,
BD=7﹣2=5,
∴AC=22≈2.83,
BC=CDsin22°≈20.37≈5.41,
∴AC+BC≈2.83+5.41≈8.2(km).
答:新建管道的总长度约为8.2km.
Ⅲ.(本题满分22分,第21题12分,第22题10分)
21.(12分)
为了丰富学生们的课余生活,学校准备开展第二课堂,有四类课程可供选择,分别是“A.书画类、B.文艺类、C.社会实践类、D.体育类”.现随机抽取了七年级部分学生对报名意向进行调查,并根据调查结果绘制了两幅不完整的统计图,请你根据图表信息回答下列问题:
(1)本次被抽查的学生共有 名,扇形统计图中“A.书画类”所占扇形的圆心角的度数为 度;
(2)请你将条形统计图补全;
(3)若该校七年级共有600名学生,请根据上述调查结果估计该校学生选择“C.社会实践类”的学生共有多少名?
(4)本次调查中抽中了七(1)班王芳和小颖两名学生,请用列表法或画树状图法求她们选择同一个项目的概率.
【答案】见解析。
【解析】(1)本次被抽查的学生共有:20÷40%=50(名),
扇形统计图中“A.书画类”所占扇形的圆心角的度数为1050×360°=72°;
故答案为:50,72;
(2)B类人数是:50﹣10﹣8﹣20=12(人),
补全条形统计图如图所示:
(3)850×600=96名,
答:估计该校学生选择“C.社会实践类”的学生共有96名;
(4)列表如下:
A
B
C
D
A
(A,A)
(B,A)
(C,A)
(D,A)
B
(A,B)
(B,B)
(C,B)
(D,B)
C
(A,C)
(B,C)
(C,C)
(D,C)
D
(A,D)
(B,D)
(C,D)
(D,D)
由表格可得:共有16种等可能的结果,其中王芳和小颖两名学生选择同一个项目的结果有4种,
∴王芳和小颖两名学生选择同一个项目的概率=416=14.
22.(10分)
如图,在△ABC的边BC上取一点O,以O为圆心,OC为半径画⊙O,⊙O与边AB相切于点D,AC=AD,连接OA交⊙O于点E,连接CE,并延长交线段AB于点F.
(1)求证:AC是⊙O的切线;
(2)若AB=10,tanB=43,求⊙O的半径;
(3)若F是AB的中点,试探究BD+CE与AF的数量关系并说明理由.
【答案】见解析。
【分析】(1)连接OD,由切线的性质可得∠ADO=90°,由“SSS”可证△ACO≌△ADO,可得∠ADO=∠ACO=90°,可得结论;
(2)由锐角三角函数可设AC=4x,BC=3x,由勾股定理可求BC=6,再由勾股定理可求解;
(3)连接OD,DE,由“SAS”可知△COE≌△DOE,可得∠OCE=∠OED,由三角形内角和定理可得∠DEF=180°﹣∠OEC﹣∠OED=180°﹣2∠OCE,∠DFE=180°﹣∠BCF﹣∠CBF=180°﹣2∠OCE,可得∠DEF=∠DFE,可证DE=DF=CE,可得结论.
【解析】(1)如图,连接OD,
∵⊙O与边AB相切于点D,
∴OD⊥AB,即∠ADO=90°,
∵AO=AO,AC=AD,OC=OD,
∴△ACO≌△ADO(SSS),
∴∠ADO=∠ACO=90°,
又∵OC是半径,
∴AC是⊙O的切线;
(2)∵tanB=43=ACBC,
∴设AC=4x,BC=3x,
∵AC2+BC2=AB2,
∴16x2+9x2=100,
∴x=2,
∴BC=6,
∵AC=AD=8,AB=10,
∴BD=2,
∵OB2=OD2+BD2,
∴(6﹣OC)2=OC2+4,
∴OC=83,
故⊙O的半径为83;
(3)连接OD,DE,
由(1)可知:△ACO≌△ADO,
∴∠ACO=∠ADO=90°,∠AOC=∠AOD,
又∵CO=DO,OE=OE,
∴△COE≌△DOE(SAS),
∴∠OCE=∠OED,
∵OC=OE=OD,
∴∠OCE=∠OEC=∠OED=∠ODE,
∴∠DEF=180°﹣∠OEC﹣∠OED=180°﹣2∠OCE,
∵点F是AB中点,∠ACB=90°,
∴CF=BF=AF,
∴∠FCB=∠FBC,
∴∠DFE=180°﹣∠BCF﹣∠CBF=180°﹣2∠OCE,
∴∠DEF=∠DFE,
∴DE=DF=CE,
∴AF=BF=DF+BD=CE+BD.
Ⅳ.(本题满分10分)
23.(10分)小华端午节从家里出发,沿笔直道路匀速步行去妈妈经营的商店帮忙,妈妈同时骑三轮车从商店出发,沿相同路线匀速回家装载货物,然后按原路原速返回商店,小华到达商店比妈妈返回商店早5分钟.在此过程中,设妈妈从商店出发开始所用时间为t(分钟),图1表示两人之间的距离s(米)与时间t(分钟)的函数关系的图象;图2中线段表示小华和商店的距离(米)与时间t(分钟)的函数关系的图象的一部分,请根据所给信息解答下列问题:
(1)填空:妈妈骑车的速度是_____米/分钟,妈妈在家装载货物所用时间是____分钟,点M的坐标是_____;
(2)直接写出妈妈和商店的距离(米)与时间t(分钟)的函数关系式,并在图2中画出其函数图象;
(3)求t为何值时,两人相距360米.
【答案】(1)120,5,;(2),见解析;(3)当t为8,12或32(分钟)时,两人相距360米.
【解析】(1)先求出小华步行的速度,然后即可求出妈妈骑车的速度;先求出妈妈回家用的时间,然后根据小华到达商店比妈妈返回商店早5分钟,即可求出装货时间;根据题意和图像可得妈妈在M点时开始返回商店,然后即可求出M的坐标;
(2)分①当0≤t<15时,②当15≤t<20时,③当20≤t≤35时三段求出解析式即可,根据解析式画图即可;
(3)由题意知,小华速度为60米/分钟,妈妈速度为120米/分钟,分①相遇前,②相遇后,③在小华到达以后三种情况讨论即可.
解:(1)由题意可得:小华步行的速度为:=60(米/分钟),
妈妈骑车的速度为:=120(米/分钟);
妈妈回家用的时间为:=15(分钟),
∵小华到达商店比妈妈返回商店早5分钟,
∴可知妈妈在35分钟时返回商店,
∴装货时间为:35-15×2=5(分钟),
即妈妈在家装载货物的时间为5分钟;
由题意和图像可得妈妈在M点时开始返回商店,
∴M点的横坐标为:15+5=20(分钟),
此时纵坐标为:20×60=1200(米),
∴点M的坐标为;
故答案为:120,5,;
(2)①当0≤t<15时y2=120t,
②当15≤t<20时y2=1800,
③当20≤t≤35时,设此段函数解析式为y2=kx+b,
将(20,1800),(35,0),代入得,
解得,
∴此段的解析式为y2=-120x+4200,
综上:;
其函数图象如图,
;
(3)由题意知,小华速度为60米/分钟,妈妈速度为120米/分钟,
①相遇前,依题意有,解得(分钟);
②相遇后,依题意有,解得(分钟);
③依题意,当分钟时,妈妈从家里出发开始追赶小华,
此时小华距商店为(米),只需10分钟,
即分钟时,小华到达商店,
而此时妈妈距离商店为(米)(米),
∴,解得(分钟),
∴当t为8,12或32(分钟)时,两人相距360米.
【点睛】本题考查了一次函数的实际应用,由图像获取正确的信息是解题关键.
Ⅴ.(本题满分12分)
24.(12分)
如图,抛物线y=ax2+bx+4交x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,AC,BC.M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.
(1)求抛物线的表达式;
(2)过点P作PN⊥BC,垂足为点N.设M点的坐标为M(m,0),请用含m的代数式表示线段PN的长,并求出当m为何值时PN有最大值,最大值是多少?
(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.
【答案】见解析。
【分析】(1)将点A、B的坐标代入抛物线表达式,即可求解;
(2)PN=PQsin45°=22(-13m2+43m)=-26(m﹣2)2+223,即可求解;
(3)分AC=CQ、AC=AQ、CQ=AQ三种情况,分别求解即可.
【解析】(1)将点A、B的坐标代入抛物线表达式得9a-3b+4=016a+4b+4=0,解得a=-13b=13,
故抛物线的表达式为:y=-13x2+13x+4;
(2)由抛物线的表达式知,点C(0,4),
由点B、C的坐标得,直线BC的表达式为:y=﹣x+4;
设点M(m,0),则点P(m,-13m2+13m+4),点Q(m,﹣m+4),
∴PQ=-13m2+13m+4+m﹣4=-13m2+43m,
∵OB=OC,故∠ABC=∠OCB=45°,
∴∠PQN=∠BQM=45°,
∴PN=PQsin45°=22(-13m2+43m)=-26(m﹣2)2+223,
∵-26<0,故当m=2时,PN有最大值为223;
(3)存在,理由:
点A、C的坐标分别为(﹣3,0)、(0,4),则AC=5,
①当AC=CQ时,过点Q作QE⊥y轴于点E,
则CQ2=CE2+EQ2,即m2+[4﹣(﹣m+4)]2=25,
解得:m=±522(舍去负值),
故点Q(522,8-522);
②当AC=AQ时,则AQ=AC=5,
在Rt△AMQ中,由勾股定理得:[m﹣(﹣3)]2+(﹣m+4)2=25,解得:m=1或0(舍去0),
故点Q(1,3);
③当CQ=AQ时,则2m2=[m=(﹣3)]2+(﹣m+4)2,解得:m=252(舍去);
综上,点Q的坐标为(1,3)或(522,8-522).
初中数学中考复习 专题29(新疆乌鲁木齐市专用)(原卷版)-2021年31个地区中考数学精品模拟试卷: 这是一份初中数学中考复习 专题29(新疆乌鲁木齐市专用)(原卷版)-2021年31个地区中考数学精品模拟试卷,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
初中数学中考复习 专题13(河南专用)(解析版)-2021年31个地区中考数学精品模拟试卷: 这是一份初中数学中考复习 专题13(河南专用)(解析版)-2021年31个地区中考数学精品模拟试卷,共17页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。
初中数学中考复习 专题12(河北专用)(解析版)-2021年31个地区中考数学精品模拟试卷: 这是一份初中数学中考复习 专题12(河北专用)(解析版)-2021年31个地区中考数学精品模拟试卷,共19页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。