初中数学中考复习 专题33 与圆有关的计算【专题巩固】-【中考高分导航】备战2022年中考数学考点总复习(全国通用)(解析版)
展开专题33 与圆有关的计算
考点1:弧长的计算
1.(2021·四川广安市·中考真题)如图,公园内有一个半径为18米的圆形草坪,从地走到地有观赏路(劣弧)和便民路(线段).已知、是圆上的点,为圆心,,小强从走到,走便民路比走观赏路少走( )米.
A. B.
C. D.
【答案】D
【分析】
作OC⊥AB于C,如图,根据垂径定理得到AC=BC,再利用等腰三角形的性质和三角形内角和计算出∠A,从而得到OC和AC,可得AB,然后利用弧长公式计算出的长,最后求它们的差即可.
【详解】
解:作OC⊥AB于C,如图,
则AC=BC,
∵OA=OB,
∴∠A=∠B=(180°-∠AOB)=30°,
在Rt△AOC中,OC=OA=9,
AC=,
∴AB=2AC=,
又∵=,
∴走便民路比走观赏路少走米,
故选D.
2.(2021·云南中考真题)如图,等边的三个顶点都在上,是的直径.若,则劣弧的长是( )
A. B. C. D.
【答案】B
【分析】
连接OB,OC,根据圆周角定理得到∠BOC=2∠BAC,证明△AOB≌△AOC,得到∠BAO=∠CAO=30°,得到∠BOD,再利用弧长公式计算.
【详解】
解:连接OB,OC,
∵△ABC是等边三角形,
∴∠BOC=2∠BAC=120°,
又∵AB=AC,OB=OC,OA=OA,
∴△AOB≌△AOC(SSS),
∴∠BAO=∠CAO=30°,
∴∠BOD=60°,
∴劣弧BD的长为=π,
故选B.
3.(2021·浙江台州市·中考真题)如图,将线段AB绕点A顺时针旋转30°,得到线段AC.若AB=12,则点B经过的路径长度为_____.(结果保留π)
【答案】
【分析】
直接利用弧长公式即可求解.
【详解】
解:,
故答案为:.
4.(2021·浙江温州市·中考真题)若扇形的圆心角为,半径为17,则扇形的弧长为______.
【答案】
【分析】
根据弧长公式l=求解即可.
【详解】
∵扇形的圆心角为,半径为17,
∴扇形的弧长==.
故答案为:
考点2:扇形的面积计算
5.(2021·四川成都市·中考真题)如图,正六边形的边长为6,以顶点A为圆心,的长为半径画圆,则图中阴影部分的面积为( )
A. B. C. D.
【答案】D
【分析】
根据正多边形内角和公式求出∠FAB,利用扇形面积公式求出扇形ABF的面积计算即可.
【详解】
解:∵六边形ABCDEF是正六边形,
∴∠FAB=,AB=6,
∴扇形ABF的面积=,
故选择D.
6.(2021·甘肃武威市·中考真题)如图,从一块直径为的圆形铁皮上剪出一个圆心角为的扇形,则此扇形的面积为_____.
【答案】
【分析】
如图,连接 证明为圆的直径,再利用勾股定理求解 再利用扇形面积公式计算即可得到答案.
【详解】
解:如图,连接
为圆的直径,
故答案为:
7.(2021·吉林·中考真题)如图,在中,,,.以点为圆心,长为半径画弧,分别交,于点,,则图中阴影部分的面积为__________(结果保留).
【答案】
【分析】
连接,由扇形面积﹣三角形面积求解.
【详解】
解:连接,
∵,
∴,
∵,
∴为等边三角形,
∴,,
∴,
∵,
∴阴影部分的面积为.
故答案为:.
8.(2021·山东青岛·中考真题)如图,正方形内接于,,分别与相切于点和点,的延长线与的延长线交于点.已知,则图中阴影部分的面积为___________.
【答案】
【分析】
连接AC,OD,根据已知条件得到AC是⊙O的直径,∠AOD=90°,根据切线的性质得到∠PAO=∠PDO=90°,得到△CDE是等腰直角三角形,根据等腰直角三角形的性质得到PE=,根据梯形和圆的面积公式即可得到答案.
【详解】
解:连接AC,OD,
∵四边形BCD是正方形,
∴∠B=90°,
∴AC是⊙O的直径,∠AOD=90°,
∵PA,PD分别与⊙O相切于点A和点D,
∴∠PAO=∠PDO=90°,
∴四边形AODP是矩形,
∵OA=OD,
∴矩形AODP是正方形,
∴∠P=90°,AP=AO,AC∥PE,
∴∠E=∠ACB=45°,
∴△CDE是等腰直角三角形,
∵AB=2,
∴AC=2AO=2,DE=CD=2,
∴AP=PD=AO=,
∴PE=3,
∴图中阴影部分的面积
故答案为:5-π.
9.(2021·湖南怀化市·中考真题)如图,在中,,,则图中阴影部分的面积是_________.(结果保留)
【答案】
【分析】
由,根据圆周角定理得出,根据S阴影=S扇形AOB-可得出结论.
【详解】
解:∵,
∴,
∴S阴影=S扇形AOB-
,
故答案为:.
10.(2021·湖北十堰市·中考真题)如图,在边长为4的正方形中,以为直径的半圆交对角线于点E,以C为圆心、长为半径画弧交于点F,则图中阴影部分的面积是_________.
【答案】3-6
【分析】
连接BE,可得是等腰直角三角形,弓形BE的面积=,再根据阴影部分的面积=弓形BE的面积+扇形CBF的面积-的面积,即可求解.
【详解】
连接BE,
∵在正方形中,以为直径的半圆交对角线于点E,
∴∠AEB=90°,即:AC⊥BE,
∵∠CAB=45°,
∴是等腰直角三角形,即:AE=BE,
∴弓形BE的面积=,
∴阴影部分的面积=弓形BE的面积+扇形CBF的面积-的面积
=+-=3-6.
故答案是:3-6.
考点3:圆柱与圆锥的有关计算
11.(2021·山东东营市·中考真题)已知某几何体的三视图如图所示,则该几何体的侧面展开图圆心角的度数为( )
A.214° B.215° C.216° D.217°
【答案】C
【分析】
由已知求得圆锥母线长及圆锥侧面展开图所对的弧长,再由弧长公式求解圆心角的度数.
【详解】
解:由圆锥的高为4,底面直径为6,
可得母线长,
圆锥的底面周长为:,
设圆心角的度数为n,
则,
解得:,
故圆心角度数为:,
故选:C.
12.(2021·江苏无锡市·中考真题)用半径为50,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面半径为________.
【答案】
【分析】
先求出扇形的弧长,再根据圆的周长公式,即可求解.
【详解】
∵扇形的弧长=,
∴圆锥的底面半径=÷2π=.
故答案是:.
13.(2021·江苏南通·中考真题)圆锥的母线长为,底面圆的半径长为,则该圆锥的侧面积为___________.
【答案】
【分析】
利用圆锥的底面半径为1,母线长为2,直接利用圆锥的侧面积公式求出即可.
【详解】
解:依题意知母线长=2,底面半径r=1,
则由圆锥的侧面积公式得S=πrl=π×1×2=2π.
故答案为:2π.
14.(2021·江苏淮安·中考真题)若圆锥的侧面积为18π,底面半径为3,则该圆锥的母线长是___.
【答案】6
【分析】
根据圆锥的侧面积=πrl,列出方程求解即可.
【详解】
解:∵圆锥的侧面积为18π,底面半径为3,
3πl=18π.
解得:l=6,
故答案为:6.
15.(2021·湖南衡阳市·中考真题)底面半径为3,母线长为4的圆锥的侧面积为__________.(结果保留)
【答案】
【分析】
圆锥的侧面展开图是扇形,根据扇形的面积公式求解即可.
【详解】
圆锥的侧面积=
故答案为:.
考点4:正多边形与圆
16.(2021·海南中考真题)如图,四边形是的内接四边形,是的直径,连接.若,则的度数是( )
A. B. C. D.
【答案】A
【分析】
先根据圆内接四边形的性质可得,再根据圆周角定理可得,然后根据角的和差即可得.
【详解】
解:四边形是的内接四边形,
,
,
,
是的直径,
,
,
故选:A.
17.(2021·黑龙江绥化市·中考真题)边长为的正六边形,它的外接圆与内切圆半径的比值是_______.
【答案】
【分析】
依题意作出图形,找出直角三角形,它的外接圆与内切圆半径为直角三角形的两条边,根据三角函数值即可求出.
【详解】
如图:正六边形中,过作
中,,
它的外接圆与内切圆半径的比值是
.
故答案为.
18.(2021·上海中考真题)六个带角的直角三角板拼成一个正六边形,直角三角板的最短边为1,求中间正六边形的面积_________.
【答案】.
【分析】
由六个带角的直角三角板拼成一个正六边形,直角三角板的最短边为1,可以得到中间正六边形的边长为1,做辅助线以后,得到△ABC、△CDE、△AEF为以1为边长的等腰三角形,△ACE为等边三角形,再根据等腰三角形与等边三角形的性质求出边长,求出面积之和即可.
【详解】
解:如图所示,连接AC、AE、CE,作BG⊥AC、DI⊥CE、FH⊥AE,AI⊥CE,
在正六边形ABCDEF中,
∵直角三角板的最短边为1,
∴正六边形ABCDEF为1,
∴△ABC、△CDE、△AEF为以1为边长的等腰三角形,△ACE为等边三角形,
∵∠ABC=∠CDE =∠EFA =120︒,AB=BC= CD=DE= EF=FA=1,
∴∠BAG=∠BCG =∠DCE=∠DEC=∠FAE =∠FEA=30︒,
∴BG=DI= FH=,
∴由勾股定理得:AG =CG = CI = EI = EH = AH =,
∴AC =AE = CE =,
∴由勾股定理得:AI=,
∴S=,
故答案为:.
初中数学中考复习 专题42 统计【专题巩固】-【中考高分导航】备战2022年中考数学考点总复习(全国通用)(解析版): 这是一份初中数学中考复习 专题42 统计【专题巩固】-【中考高分导航】备战2022年中考数学考点总复习(全国通用)(解析版),共15页。试卷主要包含了分布情况如下表等内容,欢迎下载使用。
初中数学中考复习 专题34 与圆有关的位置关系【专题巩固】-【中考高分导航】备战2022年中考数学考点总复习(全国通用)(原卷版): 这是一份初中数学中考复习 专题34 与圆有关的位置关系【专题巩固】-【中考高分导航】备战2022年中考数学考点总复习(全国通用)(原卷版),共5页。试卷主要包含了如图,是的切线,是切点等内容,欢迎下载使用。
初中数学中考复习 专题34 与圆有关的位置关系【专题巩固】-【中考高分导航】备战2022年中考数学考点总复习(全国通用)(解析版): 这是一份初中数学中考复习 专题34 与圆有关的位置关系【专题巩固】-【中考高分导航】备战2022年中考数学考点总复习(全国通用)(解析版),共15页。试卷主要包含了如图,是的切线,是切点等内容,欢迎下载使用。