终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    初中数学中考复习 专题43四边形(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版)

    立即下载
    加入资料篮
    初中数学中考复习 专题43四边形(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版)第1页
    初中数学中考复习 专题43四边形(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版)第2页
    初中数学中考复习 专题43四边形(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版)第3页
    还剩150页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学中考复习 专题43四边形(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版)

    展开

    这是一份初中数学中考复习 专题43四边形(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版),共153页。试卷主要包含了单选题,填空题等内容,欢迎下载使用。
    专题43四边形(2)(全国一年)
    学校:___________姓名:___________班级:___________考号:___________


    一、单选题
    1.(2020·贵州遵义?中考真题)如图,在菱形ABCD中,AB=5,AC=6,过点D作DE⊥BA,交BA的延长线于点E,则线段DE的长为(  )

    A. B. C.4 D.
    【答案】D
    【解析】
    【分析】
    利用菱形的面积等于两对角线之积的一半,求解菱形的面积,再利用等面积法求菱形的高即可.
    【详解】
    解:记AC与BD的交点为,
    菱形,



    菱形的面积

    菱形的面积


    故选D.

    【点睛】
    本题考查的是菱形的性质,菱形的面积公式,勾股定理.理解菱形的对角线互相垂直平分和学会用等面积法是解题关键.
    2.(2020·北京中考真题)正五边形的外角和为( )
    A.180° B.360° C.540° D.720°
    【答案】B
    【解析】
    【分析】
    根据多边形的外角和定理即可得.
    【详解】
    任意多边形的外角和都为,与边数无关
    故选:B.
    【点睛】
    本题考查了多边形的外角和定理,熟记多边形的外角和定理是解题关键.
    3.(2020·贵州黔东南?中考真题)如图,将矩形ABCD沿AC折叠,使点B落在点B′处,B′C交AD于点E,若∠1=25°,则∠2等于(  )

    A.25° B.30° C.50° D.60°
    【答案】C
    【解析】
    【分析】
    由折叠的性质可得出∠ACB′的度数,由矩形的性质可得出AD∥BC,再利用“两直线平行,内错角相等”可求出∠2的度数.
    【详解】
    解:由折叠的性质可知:∠ACB′=∠1=25°.
    ∵四边形ABCD为矩形,
    ∴AD∥BC,
    ∴∠2=∠1+∠ACB′=25°+25°=50°.
    故选:C.
    【点睛】
    本题考查了矩形的折叠问题,解答关键是注意应用折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的性质.
    4.(2020·浙江温州?中考真题)如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,CD为边作□BCDE,则∠E的度数为( )

    A.40° B.50° C.60° D.70°
    【答案】D
    【解析】
    【分析】
    先根据等腰三角形的性质和三角形的内角和定理求出∠C的度数,再根据平行四边形的性质解答即可.
    【详解】
    解:∵∠A=40°,AB=AC,
    ∴∠ABC=∠C=70°,
    ∵四边形ABCD是平行四边形,
    ∴∠E=∠C=70°.
    故选:D.
    【点睛】
    本题考查了等腰三角形的性质、平行四边形的性质和三角形的内角和定理等知识,属于基础题型,熟练掌握等腰三角形和平行四边形的性质是解题关键.
    5.(2020·山东德州?中考真题)如图,小明从A点出发,沿直线前进8米后向左转45°,再沿直线前进8米,又向左转45°……照这样走下去,他第一次回到出发点A时,共走路程为( )


    A.80米 B.96米 C.64米 D.48米
    【答案】C
    【解析】
    【分析】

    根据多边形的外角和即可求出答案.
    【详解】

    解:根据题意可知,他需要转360÷45=8次才会回到原点,所以一共走了8×8=64米.
    故选:C.
    【点睛】

    本题主要考查了利用多边形的外角和定理求多边形的边数.任何一个多边形的外角和都是360°.
    6.(2020·江苏无锡?中考真题)正十边形的每一个外角的度数为( )
    A. B. C. D.
    【答案】A
    【解析】
    【分析】
    利用多边形的外角性质计算即可求出值.
    【详解】
    解:360°÷10=36°,
    故选:A.
    【点睛】
    此题考查了多边形的内角与外角,熟练掌握多边形的外角性质是解本题的关键.
    7.(2020·江苏连云港?中考真题)如图,将矩形纸片沿折叠,使点落在对角线上的处.若,则等于( ).

    A. B. C. D.
    【答案】C
    【解析】
    【分析】
    先根据矩形的性质得到∠ABD=66°,再根据折叠的性质得到∠EBA’=33°,再根据直角三角形两锐角互余即可求解.
    【详解】
    ∵四边形ABCD是矩形,
    ∴∠ABC=90°,
    ∴∠ABD=90°-=66°,
    ∵将矩形纸片沿折叠,使点落在对角线上的处,
    ∴∠EBA’=∠ABD =33°,
    ∴=90°-∠EBA’=,
    故选C.
    【点睛】
    此题主要考查矩形内的角度求解,解题的关键是熟知矩形及折叠的性质.
    8.(2020·山东泰安?中考真题)将含30°角的一个直角三角板和一把直尺如图放置,若,则等于( )

    A.80° B.100° C.110° D.120°
    【答案】C
    【解析】
    【分析】

    如图,先根据平行线性质求出∠3,再求出∠4,根据四边形内角和为360°即可求解.
    【详解】

    解:如图,由题意得DE∥GF,
    ∴∠1=∠3=50°,
    ∴∠4=180°-∠3=130°,
    ∴在四边形ACMN中,∠2=360°-∠A-∠C-∠4=110°.

    故选:C
    【点睛】

    本题考查了平行线的性质,四边形的内角和定理,熟知相关定理是解题关键.
    9.(2020·四川南充?中考真题)如图,面积为S的菱形ABCD中,点O为对角线的交点,点E是线段BC单位中点,过点E作EF⊥BD于F,EG⊥AC与G,则四边形EFOG的面积为( )

    A. B. C. D.
    【答案】B
    【解析】
    【分析】

    由菱形的性质得出OA=OC,OB=OD,AC⊥BD,S=AC×BD,证出四边形EFOG是矩形,EF∥OC,EG∥OB,得出EF、EG都是△OBC的中位线,则EF=OC=AC,EG=OB=BD,由矩形面积即可得出答案.
    【详解】

    解:∵四边形ABCD是菱形,
    ∴OA=OC,OB=OD,AC⊥BD,S=AC×BD,
    ∵EF⊥BD于F,EG⊥AC于G,
    ∴四边形EFOG是矩形,EF∥OC,EG∥OB,
    ∵点E是线段BC的中点,
    ∴EF、EG都是△OBC的中位线,
    ∴EF=OC=AC,EG=OB=BD,
    ∴矩形EFOG的面积=EF×EG=AC×BD= =S;
    故选:B.
    【点睛】

    本题考查了菱形的性质及面积的求法、矩形的判定与性质、三角形中位线定理等知识;熟练掌握菱形的性质和矩形的性质是解题的关键.
    10.(2020·四川泸州?中考真题)下列命题是假命题的是( )
    A.平行四边形的对角线互相平分 B.矩形的对角线互相垂直
    C.菱形的对角线互相垂直平分 D.正方形的对角线互相垂直平分且相等
    【答案】B
    【解析】
    【分析】
    利用平行四边形、矩形、菱形、正方形的性质解题即可.
    【详解】
    解:A、正确,平行四边形的对角线互相平分,故选项不符合;
    B、错误,应该是矩形的对角线相等且互相平分,故选项符合;
    C、正确,菱形的对角线互相垂直且平分,故选项不符合;
    D、正确,正方形的对角线相等且互相垂直平分,故选项不符合;
    故选:B.
    【点睛】
    本题考查命题与定理、特殊四边形的性质等知识,解题的关键是熟练掌握特殊四边形的性质,属于中考常考题型.
    11.(2020·山东临沂?中考真题)如图,P是面积为S的内任意一点,的面积为,的面积为,则( )

    A. B.
    C. D.的大小与P点位置有关
    【答案】C
    【解析】
    【分析】
    过点P作AD的垂线PF,交AD于F,再延长FP交BC于点E,表示出S1+ S2,得到即可.
    【详解】
    解:如图,过点P作AD的垂线PF,交AD于F,再延长FP交BC于点E,
    根据平行四边形的性质可知PE⊥BC,AD=BC,
    ∴S1=AD×PF,S2=BC×PE,
    ∴S1+ S2
    =AD×PF+BC×PE
    =AD×(PE+PE)
    =AD×EF
    =S,
    故选C.

    【点睛】
    本题考查了三角形的面积和平行四边形的性质,解题的关键是作出平行四边形过点P的高.
    12.(2020·山东菏泽?中考真题)如果顺次连接四边形的各边中点得到的四边形是矩形,那么原来四边形的对角线一定满足的条件是( )
    A.互相平分 B.相等 C.互相垂直 D.互相垂直平分
    【答案】C
    【解析】
    【分析】
    由于顺次连接四边形各边中点得到的四边形是平行四边形,再由矩形的判定可知,依次连接对角线互相垂直的四边形各边的中点所得四边形是矩形.
    【详解】

    根据题意画出图形如下:
    答:AC与BD 的位置关系是互相垂直.
    证明:∵四边形EFGH是矩形,
    ∴∠FEH=90°,
    又∵点E、F、分别是AD、AB、各边的中点,
    ∴EF是三角形ABD的中位线,
    ∴EF∥BD,
    ∴∠FEH=∠OMH=90°,
    又∵点E、H分别是AD、CD各边的中点,
    ∴EH是三角形ACD的中位线,
    ∴EH∥AC,
    ∴∠OMH=∠COB=90°,
    即AC⊥BD.
    故选C.
    【点睛】
    此题主要考查了矩形的判定定理,画出图形进而应用平行四边形的判定以及矩形判定是解决问题的关键.
    13.(2020·湖南衡阳?中考真题)如图,在四边形ABCD中,AC与BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是( )

    A.AB∥DC,AB=DC B.AB=DC,AD=BC
    C.AB∥DC,AD=BC D.OA=OC,OB=OD
    【答案】C
    【解析】
    【分析】
    根据平行四边形的判定方法逐项分析即可.
    【详解】
    A. ∵ AB∥DC,AB=DC,∴四边形ABCD是平行四边形;
    B. ∵ AB=DC,AD=BC,∴四边形ABCD是平行四边形;
    C.等腰梯形ABCD满足 AB∥DC,AD=BC,但四边形ABCD是平行四边形;
    D. OA=OC,OB=OD,∴四边形ABCD是平行四边形;
    故选C.
    【点睛】
    本题主要考查了平行四边形的判定,平行四边形的判定方法有:①两组对边分别平行的四边形是平行四边形;②一组对边平行且相等的四边形是平行四边形;③两组对边分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤.两组对角分别相等的四边形是平行四边形.
    14.(2020·河南中考真题)如图,在中,.边在轴上,顶点的坐标分别为和.将正方形沿轴向右平移当点落在边上时,点的坐标为( )

    A. B. C. D.
    【答案】B
    【解析】
    【分析】
    先画出落在上的示意图,如图,根据锐角三角函数求解的长度,结合正方形的性质,从而可得答案.
    【详解】
    解:由题意知:
    四边形为正方形,


    如图,当落在上时,







    故选

    【点睛】
    本题考查的是平移的性质的应用,同时考查了正方形的性质,图形与坐标,锐角三角函数,掌握以上知识是解题的关键.
    15.(2020·贵州贵阳?中考真题)菱形的两条对角线长分别是6和8,则此菱形的周长是( )
    A.5 B.20 C.24 D.32
    【答案】B
    【解析】
    【分析】
    根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.
    【详解】
    解:如图所示,根据题意得AO=,BO=,
    ∵四边形ABCD是菱形,
    ∴AB=BC=CD=DA,AC⊥BD,
    ∴△AOB是直角三角形,
    ∴AB=,
    ∴此菱形的周长为:5×4=20.
    故选:B.

    【点睛】
    本题主要考查了菱形的性质,利用勾股定理求出菱形的边长是解题的关键,同学们也要熟练掌握菱形的性质:①菱形的四条边都相等;②菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.
    16.(2020·天津中考真题)如图,四边形是正方形,O,D两点的坐标分别是,,点C在第一象限,则点C的坐标是( )

    A. B. C. D.
    【答案】D
    【解析】
    【分析】
    利用O,D两点的坐标,求出OD的长度,利用正方形的性质求出OB,BC的长度,进而得出C点的坐标即可.
    【详解】
    解:∵O,D两点的坐标分别是,,
    ∴OD=6,
    ∵四边形是正方形,
    ∴OB⊥BC,OB=BC=6
    ∴C点的坐标为:,
    故选:D.
    【点睛】
    本题主要考查了点的坐标和正方形的性质,正确求出OB,BC的长度是解决本题的关键.
    17.(2020·山东青岛?中考真题)如图,将矩形折叠,使点和点重合,折痕为,与交于点若,,则的长为( )

    A. B. C. D.
    【答案】C
    【解析】
    【分析】
    先证明再求解利用轴对称可得答案.
    【详解】
    解:由对折可得:
    矩形,





    BC=8

    由对折得:
    故选C.
    【点睛】
    本题考查的是矩形的性质,等腰三角形的判定,勾股定理的应用,轴对称的性质,掌握以上知识是解题的关键.
    18.(2020·贵州黔东南?中考真题)如图,正方形ABCD的边长为2,O为对角线的交点,点E、F分别为BC、AD的中点.以C为圆心,2为半径作圆弧,再分别以E、F为圆心,1为半径作圆弧、,则图中阴影部分的面积为(  )

    A.π﹣1 B.π﹣2 C.π﹣3 D.4﹣π
    【答案】B
    【解析】
    【分析】
    根据题意和图形,可知阴影部分的面积是以2为半径的四分之一个圆(扇形)的面积减去以1为半径的半圆(扇形)的面积再减去2个以边长为1的正方形的面积减去以1半径的四分之一个圆(扇形)的面积,本题得以解决.
    【详解】
    解:由题意可得,
    阴影部分的面积是:•π×22﹣﹣2(1×1﹣•π×12)=π﹣2,
    故选:B.
    【点睛】
    本题主要考查运用正方形的性质,圆的面积公式(或扇形的面积公式),正方形的面积公式计算不规则几何图形的面积,解题的关键是理解题意,观察图形,合理分割,转化为规则图形的面积和差进行计算.
    19.(2020·贵州黔东南?中考真题)若菱形ABCD的一条对角线长为8,边CD的长是方程x2﹣10x+24=0的一个根,则该菱形ABCD的周长为(  )
    A.16 B.24 C.16或24 D.48
    【答案】B
    【解析】
    【分析】
    解方程得出x=4或x=6,分两种情况:①当AB=AD=4时,4+4=8,不能构成三角形;②当AB=AD=6时,6+6>8,即可得出菱形ABCD的周长.
    【详解】
    解:如图所示:
    ∵四边形ABCD是菱形,
    ∴AB=BC=CD=AD,
    ∵x2﹣10x+24=0,
    因式分解得:(x﹣4)(x﹣6)=0,
    解得:x=4或x=6,
    分两种情况:
    ①当AB=AD=4时,4+4=8,不能构成三角形;
    ②当AB=AD=6时,6+6>8,
    ∴菱形ABCD的周长=4AB=24.
    故选:B.

    【点睛】
    本题考查菱形的性质、解一元二次方程-因式分解法、三角形的三边关系,熟练掌握并灵活运用是解题的关键.
    20.(2020·新疆中考真题)如图,在△ABC中,∠A=90°,D是AB的中点,过点D作BC的平行线,交AC于点E,作BC的垂线交BC于点F,若AB=CE,且△DFE的面积为1,则BC的长为( )

    A. B.5 C. D.10
    【答案】A
    【解析】
    【分析】
    利用D为AB的中点,DE//BC,证明DE是中位线,求得的面积,利用相似三角形的性质求解的面积,由勾股定理可得答案.
    【详解】
    解:是AB的中点,
    是的中位线,











    故选A.
    【点睛】
    本题考查了三角形的中位线的性质,相似三角形的判定与性质,勾股定理的应用,掌握以上知识是解题的关键.
    21.(2020·贵州铜仁?中考真题)如图,正方形ABCD的边长为4,点E在边AB上,BE=1,∠DAM=45°,点F在射线AM上,且AF=,过点F作AD的平行线交BA的延长线于点H,CF与AD相交于点G,连接EC、EG、EF.下列结论:①△ECF的面积为;②△AEG的周长为8;③EG2=DG2+BE2;其中正确的是(  )

    A.①②③ B.①③ C.①② D.②③
    【答案】C
    【解析】
    【分析】
    先判断出∠H=90°,进而求出AH=HF=1=BE.进而判断出△EHF≌△CBE(SAS),得出EF=EC,∠HEF=∠BCE,判断出△CEF是等腰直角三角形,再用勾股定理求出EC2=17,即可得出①正确;先判断出四边形APFH是矩形,进而判断出矩形AHFP是正方形,得出AP=PH=AH=1,同理:四边形ABQP是矩形,得出PQ=4,BQ=1,FQ=5,CQ=3,再判断出△FPG∽△FQC,得出,求出PG=,再根据勾股定理求得EG=,即△AEG的周长为8,判断出②正确;先求出DG=,进而求出DG2+BE2=,在求出EG2=≠,判断出③错误,即可得出结论.
    【详解】
    解:如图,在正方形ABCD中,AD∥BC,AB=BC=AD=4,∠B=∠BAD=90°,
    ∴∠HAD=90°,
    ∵HF∥AD,
    ∴∠H=90°,
    ∵∠HAF=90°﹣∠DAM=45°,
    ∴∠AFH=∠HAF.
    ∵AF=,
    ∴AH=HF=1=BE.
    ∴EH=AE+AH=AB﹣BE+AH=4=BC,
    ∴△EHF≌△CBE(SAS),
    ∴EF=EC,∠HEF=∠BCE,
    ∵∠BCE+∠BEC=90°,
    ∴HEF+∠BEC=90°,
    ∴∠FEC=90°,
    ∴△CEF是等腰直角三角形,
    在Rt△CBE中,BE=1,BC=4,
    ∴EC2=BE2+BC2=17,
    ∴S△ECF=EF•EC=EC2=,故①正确:
    过点F作FQ⊥BC于Q,交AD于P,
    ∴∠APF=90°=∠H=∠HAD,
    ∴四边形APFH是矩形,
    ∵AH=HF,
    ∴矩形AHFP是正方形,
    ∴AP=PH=AH=1,
    同理:四边形ABQP是矩形,
    ∴PQ=AB=4,BQ=AP1,FQ=FP+PQ=5,CQ=BC﹣BQ=3,
    ∵AD∥BC,
    ∴△FPG∽△FQC,
    ∴,
    ∴,
    ∴PG=,
    ∴AG=AP+PG=,
    在Rt△EAG中,根据勾股定理得,EG=,
    ∴△AEG的周长为AG+EG+AE==8,故②正确;
    ∵AD=4,
    ∴DG=AD﹣AG=,
    ∴DG2+BE2=+1=,
    ∵EG2=()2=≠,
    ∴EG2≠DG2+BE2,故③错误,
    ∴正确的有①②,
    故选:C.

    【点睛】
    本题主要考查了三角形的综合应用,结合了全等三角形,勾股定理,三角形相似等知识点解题.
    22.(2020·贵州铜仁?中考真题)如图,在矩形ABCD中,AB=3,BC=4,动点P沿折线BCD从点B开始运动到点D,设点P运动的路程为x,△ADP的面积为y,那么y与x之间的函数关系的图象大致是(  )

    A. B.
    C. D.
    【答案】D
    【解析】
    【分析】
    分别求出0≤x≤4、4<x<7时函数表达式,即可求解.
    【详解】
    解:由题意当0≤x≤4时,
    y=×AD×AB=×3×4=6,
    当4<x<7时,

    y=×PD×AD=×(7﹣x)×4=14﹣2x.
    故选:D.
    【点睛】
    本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.
    23.(2020·浙江宁波?中考真题)如图,在Rt△ABC中,∠ACB=90°,CD为中线,延长CB至点E,使BE=BC,连结DE,F为DE中点,连结BF.若AC=8,BC=6,则BF的长为(  )

    A.2 B.2.5 C.3 D.4
    【答案】B
    【解析】
    【分析】
    利用勾股定理求得AB=10;然后由直角三角形斜边上的中线等于斜边的一半求得CD的长度;结合题意知线段BF是△CDE的中位线,则BF=CD.
    【详解】
    解:∵在Rt△ABC中,∠ACB=90°,AC=8,BC=6,
    ∴AB===10.
    又∵CD为中线,
    ∴CD=AB=5.
    ∵F为DE中点,BE=BC,即点B是EC的中点,
    ∴BF是△CDE的中位线,则BF=CD=2.5.
    故选:B.
    【点睛】
    本题主要考查了勾股定理,三角形中位线定理,直角三角形斜边上的中线,此题的突破口是推知线段CD的长度和线段BF是△CDE的中位线.
    24.(2020·浙江台州?中考真题)如图,已知线段AB,分别以A,B为圆心,大于同样长为半径画弧,两弧交于点C,D,连接AC,AD,BC,BD,CD,则下列说法错误的是( )

    A.AB平分∠CAD B.CD平分∠ACB C.AB⊥CD D.AB=CD
    【答案】D
    【解析】
    【分析】

    根据作图判断出四边形ACBD是菱形,再根据菱形的性质:菱形的对角线平分一组对角、菱形的对角线互相垂直平分可得出答案
    【详解】

    解:由作图知AC=AD=BC=BD,
    ∴四边形ACBD是菱形,
    ∴AB平分∠CAD、CD平分∠ACB、AB⊥CD,
    不能判断AB=CD,
    故选:D.
    【点睛】

    本题主要考查线段垂直平分线的尺规作图、菱形的判定方法等,解题的关键是掌握菱形的判定与性质.
    25.(2020·浙江台州?中考真题)下是关于某个四边形的三个结论:①它的对角线相等;②它是一个正方形;③它是一个矩形.下列推理过程正确的是( )
    A.由②推出③,由③推出① B.由①推出②,由②推出③
    C.由③推出①,由①推出② D.由①推出③,由③推出②
    【答案】A
    【解析】
    【分析】
    根据正方形和矩形的性质定理解题即可.
    【详解】
    根据正方形特点由②可以推理出③,再由矩形的性质根据③推出①,
    故选A.
    【点睛】
    此题考查正方形和矩形的性质定理,难度一般.
    26.(2020·浙江衢州?中考真题)如图,把一张矩形纸片ABCD按所示方法进行两次折叠,得到等腰直角三角形BEF,若BC=1,则AB的长度为(  )

    A. B. C. D.
    【答案】A
    【解析】
    【分析】
    先判断出∠ADE=45°,进而判断出AE=AD,利用勾股定理即可得出结论.
    【详解】
    解:由折叠补全图形如图所示,
    ∵四边形ABCD是矩形,
    ∴∠ADA'=∠B=∠C=∠A=90°,AD=BC=1,CD=AB,
    由第一次折叠得:∠DAE=∠A=90°,∠ADE=∠ADC=45°,
    ∴∠AED=∠ADE=45°,
    ∴AE=AD=1,
    在Rt△ADE中,根据勾股定理得,DE=AD=,
    由第二次折叠可知,

    故选:A.

    【点睛】
    本题考查了图形的折叠和勾股定理,搞清楚折叠中线段的数量关系是解决此类题的关键.
    27.(2020·浙江金华?中考真题)如图,四个全等的直角三角形拼成“赵爽弦图”,得到正方形ABCD与正方形EFGH.连结EG,BD相交于点O,BD与HC相交于点P.若GO=GP,则的值是( )

    A. B. C. D.
    【答案】B
    【解析】
    【分析】
    证明,得出.设,则,,由勾股定理得出,则可得出答案.
    【详解】
    解:四边形为正方形,
    ,,



    又,


    ,,


    设,
    为,的交点,
    ,,
    四个全等的直角三角形拼成“赵爽弦图”,




    故选:.
    【点睛】
    本题考查了正方形的性质,全等三角形的判定与性质,勾股定理,直角三角形的性质等知识,熟练掌握勾股定理的应用是解题的关键.
    28.(2020·四川乐山?中考真题)如图,在菱形中,,,是对角线的中点,过点作 于点,连结.则四边形的周长为( )

    A. B. C. D.
    【答案】B
    【解析】
    【分析】
    由已知及菱形的性质求得∠ABD=∠CDB=30º,AO⊥BD,利用含30º的直角三角形边的关系分别求得AO、DO、OE、DE,进而求得四边形的周长.
    【详解】
    ∵四边形ABCD是菱形,是对角线的中点,
    ∴AO⊥BD , AD=AB=4,AB∥DC
    ∵∠BAD=120º,
    ∴∠ABD=∠ADB=∠CDB=30º,
    ∵OE⊥DC,
    ∴在RtΔAOD中,AD=4 , AO==2 ,DO=,
    在RtΔDEO中,OE=,DE=,
    ∴四边形的周长为AO+OE+DE+AD=2++3+4=9+,
    故选:B.
    【点睛】
    本题考查菱形的性质、含30º的直角三角形、勾股定理,熟练掌握菱形的性质及含30º的直角三角形边的关系是解答的关键.
    29.(2020·四川乐山?中考真题)如图,在平面直角坐标系中,直线与双曲线交于、两点,是以点为圆心,半径长的圆上一动点,连结,为的中点.若线段长度的最大值为,则的值为( )

    A. B. C. D.
    【答案】A
    【解析】
    【分析】
    连接BP,证得OQ是△ABP的中位线,当P、C、B三点共线时PB长度最大,PB=2OQ=4,设 B点的坐标为(x,-x),根据点,可利用勾股定理求出B点坐标,代入反比例函数关系式即可求出k的值.
    【详解】
    解:连接BP,
    ∵直线与双曲线的图形均关于直线y=x对称,
    ∴OA=OB,
    ∵点Q是AP的中点,点O是AB的中点
    ∴OQ是△ABP的中位线,
    当OQ的长度最大时,即PB的长度最大,
    ∵PB≤PC+BC,当三点共线时PB长度最大,
    ∴当P、C、B三点共线时PB=2OQ=4,
    ∵PC=1,
    ∴BC=3,
    设B点的坐标为(x,-x),
    则,
    解得(舍去)
    故B点坐标为,
    代入中可得:,
    故答案为:A.

    【点睛】
    本题考查三角形中位线的应用和正比例函数、反比例函数的性质,结合题意作出辅助线是解题的关键.
    30.(2020·四川遂宁?中考真题)如图,在平行四边形ABCD中,∠ABC的平分线交AC于点E,交AD于点F,交CD的延长线于点G,若AF=2FD,则的值为(  )

    A. B. C. D.
    【答案】C
    【解析】
    【分析】
    由AF=2DF,可以假设DF=k,则AF=2k,AD=3k,证明AB=AF=2k,DF=DG=k,再利用平行线分线段成比例定理即可解决问题.
    【详解】
    解:由AF=2DF,可以假设DF=k,则AF=2k,AD=3k,
    ∵四边形ABCD是平行四边形,
    ∴AD∥BC,AB∥CD,AB=CD,
    ∴∠AFB=∠FBC=∠DFG,∠ABF=∠G,
    ∵BE平分∠ABC,
    ∴∠ABF=∠CBG,
    ∴∠ABF=∠AFB=∠DFG=∠G,
    ∴AB=CD=2k,DF=DG=k,
    ∴CG=CD+DG=3k,
    ∵AB∥DG,
    ∴△ABE∽△CGE,
    ∴,
    故选:C.
    【点睛】
    本题考查了比例的性质、相似三角形的判定及性质、等腰三角形的性质、角平分线的性质、平行四边形的性质、平行线分线段成比例定理,熟练掌握性质及定理是解题的关键.
    31.(2020·四川遂宁?中考真题)如图,在Rt△ABC中,∠C=90°,AC=BC,点O在AB上,经过点A的⊙O与BC相切于点D,交AB于点E,若CD=,则图中阴影部分面积为(  )

    A.4﹣ B.2﹣ C.2﹣π D.1﹣
    【答案】B
    【解析】
    【分析】
    连接OD,OH⊥AC于H,如图,根据切线的性质得到OD⊥BC,则四边形ODCH为矩形,所以OH=CD=,则OA=OH=2,接着计算出∠BOD=45°,BD=OD=2,然后利用扇形的面积公式,利用图中阴影部分面积=S△OBD﹣S扇形DOE进行计算.
    【详解】
    解:连接OD,过O作OH⊥AC于H,如图,
    ∵∠C=90°,AC=BC,
    ∴∠B=∠CAB=45°,
    ∵⊙O与BC相切于点D,
    ∴OD⊥BC,
    ∴四边形ODCH为矩形,
    ∴OH=CD=,
    在Rt△OAH中,∠OAH=45°,
    ∴OA=OH=2,
    在Rt△OBD中,∵∠B=45°,
    ∴∠BOD=45°,BD=OD=2,
    ∴图中阴影部分面积=S△OBD﹣S扇形DOE
    =0.5×2×2﹣
    =2﹣π.
    故选:B.

    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了扇形面积的计算.
    32.(2020·山东德州?中考真题)下列命题:
    ①一组对边平行,另一组对边相等的四边形是平行四边形;
    ②对角线互相垂直且平分的四边形是菱形;
    ③一个角为90°且一组邻边相等的四边形是正方形;
    ④对角线相等的平行四边形是矩形.
    其中真命题的个数是( )
    A.1 B.2 C.3 D.4
    【答案】B
    【解析】
    【分析】
    根据平行四边形的判定,菱形的判定,正方形的判定,矩形的判定逐一判断即可.
    【详解】
    解:①一组对边平行,另一组对边相等的四边形是平行四边形,是假命题;
    ②对角线互相垂直且平分的四边形是菱形,是真命题;
    ③一个角为90°且一组邻边相等的四边形是正方形,是假命题;
    ④对角线相等的平行四边形是矩形,是真命题.
    故选:B.
    【点睛】
    本题考查了平行四边形、菱形、正方形、矩形的判定,熟知特殊四边形的判定定理是解题关键.
    33.(2020·江苏无锡?中考真题)如图,在四边形中,,,,把沿着翻折得到,若,则线段的长度为( )

    A. B. C. D.
    【答案】B
    【解析】
    【分析】
    根据已知,易求得,延长交于,可得,则,再过点作,设,则,,,在中,根据,代入数值,即可求解.
    【详解】
    解:如图

    ∵ ,,,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,延长交于,
    ∴ ,则, ,
    过点作,设,则,,
    ∴,
    ∴在中,,即,
    解得:,
    ∴.
    故选B.
    【点睛】
    本题目考查三角形的综合,涉及的知识点有锐角三角函数、折叠等,熟练掌握三角形的有关性质,正确设出未知数是顺利解题的关键.
    34.(2020·四川自贡?中考真题)如图,在平行四边形中,,是锐角,于点,是的中点,连接;若,则的长为( )

    A. B. C. D.
    【答案】B
    【解析】
    【分析】
    延长EF,DA交于G,连接DE,先证明△AFG≌△BFE,进而得到BE=AG,F是GE的中点,结合条件BF⊥GE进而得到BF是线段GE的垂直平分线,得到GD=DE,最后在Rt△AED中使用勾股定理即可求解.
    【详解】
    解:延长EF,DA交于G,连接DE,如下图所示:

    ∵F是AB的中点,∴AF=BF,
    ∵四边形ABCD是平行四边形,
    ∴AB∥BC,∴∠GAB=∠EBF
    且∠GFA=∠EFB,∴△AFG≌△BFE(ASA),
    设,
    由GF=EF,且∠DFE=90°知,
    DF是线段GE的垂直平分线,
    ∴,
    在Rt△GAE中,.
    在Rt△AED中,,
    ∴,解得,
    ∴,
    故选:B.
    【点睛】
    本题考查了三角形全等的判定与性质、平行四边形的性质、勾股定理等知识点,能正确作出辅助线是解题的关键.
    35.(2020·重庆中考真题)如图,在平面直角坐标系中,矩形ABCD的对角线AC的中点与坐标原点重合,点E是x轴上一点,连接AE.若AD平分,反比例函数的图象经过AE上的两点A,F,且,的面积为18,则k的值为( )

    A.6 B.12 C.18 D.24
    【答案】B
    【解析】
    【分析】
    先证明OB∥AE,得出S△ABE=S△OAE=18,设A的坐标为(a,),求出F点的坐标和E点的坐标,可得S△OAE=×3a×=18,求解即可.
    【详解】
    解:如图,连接BD,

    ∵四边形ABCD为矩形,O为对角线,
    ∴AO=OD,
    ∴∠ODA=∠OAD,
    又∵AD为∠DAE的平分线,
    ∴∠OAD=∠EAD,
    ∴∠EAD=∠ODA,
    ∴OB∥AE,
    ∵S△ABE=18,
    ∴S△OAE=18,
    设A的坐标为(a,),
    ∵AF=EF,
    ∴F点的纵坐标为,
    代入反比例函数解析式可得F点的坐标为(2a,),
    ∴E点的坐标为(3a,0),
    S△OAE=×3a×=18,
    解得k=12,
    故选:B.
    【点睛】
    本题考查了反比例函数和几何综合,矩形的性质,平行线的判定,得出S△ABE=S△OAE=18是解题关键.
    36.(2020·江苏苏州?中考真题)如图,在扇形中,已知,,过的中点作,,垂足分别为、,则图中阴影部分的面积为( )

    A. B. C. D.
    【答案】B
    【解析】
    【分析】
    连接OC,易证,进一步可得出四边形CDOE为正方形,再根据正方形的性质求出边长即可求得正方形的面积,根据扇形面积公式得出扇形AOB的面积,最后根据阴影部分的面积等于扇形AOB的面积剪去正方形CDOE的面积就可得出答案.
    【详解】
    连接OC
    点为的中点

    在和中




    四边形CDOE为正方形



    由扇形面积公式得

    故选B.

    【点睛】
    本题考查了扇形面积的计算、正方形的判定及性质,熟练掌握扇形面积公式是解题的关键.
    37.(2020·黑龙江绥化?中考真题)如图,四边形是菱形,E、F分别是、两边上的点,不能保证和一定全等的条件是( )

    A. B. C. D.
    【答案】C
    【解析】
    【分析】
    根据菱形的性质结合全等三角形的判定方法,对各选项分别判断即可得解.
    【详解】
    ∵四边形是菱形,
    ∴AB=BC=CD=DA,,,
    如果,
    ∴,即,
    ∵,
    ∴(ASA),故A正确;
    如果EC=FC,
    ∴BC-EC=CD-FC,即BE=DF,
    ∵,
    ∴(SAS),故B正确;
    如果AE=AF,
    ∵AB=DA,,
    是SSA,则不能判定和全等,故C错误;
    如果,
    则,
    ∴(SAS),故D正确;
    故选:C.
    【点睛】
    本题考查了全等三角形的判定方法,一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
    38.(2020·黑龙江绥化?中考真题)如图,在中,为斜边的中线,过点D作于点E,延长至点F,使,连接,点G在线段上,连接,且.下列结论:①;②四边形是平行四边形;③;④.其中正确结论的个数是( )

    A.1个 B.2个 C.3个 D.4个
    【答案】D
    【解析】
    【分析】
    根据直角三角形的性质知DA=DB=DC,根据等腰三角形的性质结合菱形的判定定理可证得四边形ADCF为菱形,继而推出四边形DBCF为平行四边形,可判断①②;利用邻补角的性质结合已知可证得∠CFE =∠FGE,即可判断③;由③的结论可证得△FEG△FCD,推出,即可判断④.
    【详解】
    ∵在中,为斜边的中线,
    ∴DA=DB=DC,
    ∵于点E,且,
    ∴AE=EC,
    ∴四边形ADCF为菱形,
    ∴FC∥BD,FC=AD=BD,
    ∴四边形DBCF为平行四边形,故②正确;
    ∴DF=BC,
    ∴DE=BC,故①正确;
    ∵四边形ADCE为菱形,

    ∴CF=CD,
    ∴∠CFE=∠CDE,
    ∵∠CDE+∠EGC=180,而∠FGE+∠EGC=180,
    ∴∠CDE=∠FGE,∠CFE =∠FGE,
    ∴EF=EG,故③正确;
    ∵∠CDF=∠FGE,∠CFD=∠EFG,
    ∴△FEG△FCD,
    ∴,即,
    ∴,
    ∴BC =DF,故④正确;
    综上,①②③④都正确,
    故选:D.
    【点睛】
    本题考查了菱形的判定和性质、直角三角形的性质、等腰三角形的性质、相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形和相似三角形解决问题.
    39.(2020·四川甘孜?中考真题)如图,菱形ABCD中,对角线AC,BD相交于点O,E为AB的中点.若菱形ABCD的周长为32,则OE的长为( )

    A.3 B.4 C.5 D.6
    【答案】B
    【解析】
    【分析】
    利用菱形的对边相等以及对角线互相垂直,进而利用直角三角形斜边上的中线等于斜边的一半得出答案.
    【详解】
    解:∵四边形ABCD是菱形,
    ∴AC⊥BD,AB=BC=CD=AD,
    ∴∠AOB=90°,
    又∵AB+BC+CD+AD=32.
    ∴AB=8,
    在Rt△AOB中,OE是斜边上的中线,
    ∴OE=AB=4.
    故选:B.
    【点睛】
    本题考查了菱形的性质、直角三角形斜边上的中线的性质.注意:直角三角形斜边上的中线等于斜边的一半.
    40.(2020·安徽中考真题)已知点在上.则下列命题为真命题的是( )
    A.若半径平分弦.则四边形是平行四边形
    B.若四边形是平行四边形.则
    C.若.则弦平分半径
    D.若弦平分半径.则半径平分弦
    【答案】B
    【解析】
    【分析】
    根据圆的有关性质、垂径定理及其推论、特殊平行四边形的判定与性质依次对各项判断即可.
    【详解】
    A.∵半径平分弦,
    ∴OB⊥AC,AB=BC,不能判断四边形OABC是平行四边形,
    假命题;
    B.∵四边形是平行四边形,且OA=OC,
    ∴四边形是菱形,
    ∴OA=AB=OB,OA∥BC,
    ∴△OAB是等边三角形,
    ∴∠OAB=60º,
    ∴∠ABC=120º,
    真命题;
    C.∵,
    ∴∠AOC=120º,不能判断出弦平分半径,
    假命题;
    D.只有当弦垂直平分半径时,半径平分弦,所以是
    假命题,
    故选:B.
    【点睛】
    本题主要考查命题与证明,涉及垂径定理及其推论、菱形的判定与性质、等边三角形的判定与性质等知识,解答的关键是会利用所学的知识进行推理证明命题的真假.
    41.(2020·山东聊城?中考真题)如图,在中,,,将绕点旋转得到,使点的对应点落在上,在上取点,使,那么点到的距离等于( ).

    A. B. C. D.
    【答案】D
    【解析】
    【分析】
    根据旋转的性质和30°角的直角三角形的性质可得的长,进而可得的长,过点D作DM⊥BC于点M,过点作于点E,于点F,如图,则四边形是矩形,解Rt△可得的长,即为FM的长,根据三角形的内角和易得,然后解Rt△可求出DF的长,进一步即可求出结果.
    【详解】
    解:在中,∵,,
    ∴AC=2AB=4,
    ∵将绕点旋转得到,使点的对应点落在上,
    ∴,
    ∴,
    过点D作DM⊥BC于点M,过点作于点E,于点F,交AC于点N,如图,则四边形是矩形,
    ∴,
    在Rt△中,,∴FM=1,
    ∵,
    ∴,
    在Rt△中,,
    ∴,
    即点到的距离等于.
    故选:D.

    【点睛】
    本题考查了解直角三角形、矩形的判定和性质以及旋转的性质等知识,正确作出辅助线、熟练掌握解直角三角形的知识是解题的关键.
    42.(2020·山东菏泽?中考真题)如图,将绕点顺时针旋转角,得到,若点恰好在的延长线上,则等于( )

    A. B. C. D.
    【答案】D
    【解析】
    【分析】
    根据旋转的性质和四边形的内角和是360º即可求解.
    【详解】
    由旋转的性质得:∠BAD=,∠ABC=∠ADE,
    ∵∠ABC+∠ABE=180º,
    ∴∠ADE+∠ABE=180º,
    ∵∠ABE+∠BED+∠ADE+∠BAD=360º,∠BAD=
    ∴∠BED=180º-,
    故选:D.
    【点睛】
    本题考查了旋转的性质、四边形的内角和是360º,熟练掌握旋转的性质是解答的关键.
    43.(2020·湖南怀化?中考真题)在矩形中,、相交于点,若的面积为2,则矩形的面积为( )

    A.4 B.6 C.8 D.10
    【答案】C
    【解析】
    【分析】
    根据矩形的性质得到OA=OB=OC=OD,推出,即可求出矩形ABCD的面积.
    【详解】
    ∵四边形ABCD是矩形,对角线、相交于点,
    ∴AC=BD,且OA=OB=OC=OD,
    ∴,
    ∴矩形的面积为,
    故选:C.
    【点睛】
    此题考查矩形的性质:矩形的对角线相等,且互相平分,由此可以将矩形的;面积四等分,由此可以解决问题,熟记矩形的性质定理是解题的关键.
    44.(2020·黑龙江中考真题)如图,菱形的两个顶点,在反比例函数的图象上,对角线,的交点恰好是坐标原点,已知,,则的值是( )

    A. B. C. D.
    【答案】C
    【解析】
    【分析】

    根据菱形的性质得到AC⊥BD,根据勾股定理得到OB的长,利用三角函数得到OA的长,求得∠AOE=∠BOF=45,继而求得点A的坐标,即可求解.
    【详解】

    ∵四边形ABCD是菱形,
    ∴BA=AD,AC⊥BD,
    ∵∠ABC=120,
    ∴∠ABO=60,
    ∵点B(-1,1),
    ∴OB=,
    ∵,
    ∴AO=,
    作BF⊥轴于F,AE⊥轴于E,

    ∵点B(-1,1),
    ∴OF=BF=1,
    ∴∠FOB=∠BOF=45,
    ∵∠BOF+∠AOF=∠AOE+∠AOF=90,
    ∴∠AOE=∠BOF=45,
    ∴△AOE为等腰直角三角形,
    ∵AO,
    ∴AE=OE=AO,
    ∴点A的坐标为(,),
    ∵点A在反比例函数的图象上,
    ∴,
    故选:C.
    【点睛】

    本题是反比例函数与几何的综合题,考查了反比例函数图象上点的坐标特征、菱形的性质、解直角三角形、等腰直角三角形的判定和性质,解答本题的关键是明确题意,利用反比例函数的性质解答.
    45.(2020·黑龙江中考真题)如图,菱形的对角线、相交于点,过点作于点,连接,若,,则的长为( )

    A. B. C. D.
    【答案】A
    【解析】
    【分析】
    根据菱形面积=对角线积的一半可求BD,再根据直角三角形斜边上的中线等于斜边的一半.
    【详解】
    解:∵四边形ABCD是菱形,
    ∴AO=CO=6,BO=DO,S菱形ABCD= =48,
    ∴BD=8,
    ∵DH⊥AB,BO=DO=4,
    ∴OH=BD=4.
    故选:A.
    【点睛】
    本题考查了菱形的性质,直角三角形斜边上的中线等于斜边的一半,关键是灵活运用这些性质解决问题.
    46.(2020·湖北襄阳?中考真题)已知四边形是平行四边形,,相交于点O,下列结论错误的是( )
    A.,
    B.当时,四边形是菱形
    C.当时,四边形是矩形
    D.当且时,四边形是正方形
    【答案】B
    【解析】
    【分析】
    根据平行四边形的性质,菱形,矩形,正方形的判定逐一判断即可.
    【详解】
    解:四边形是平行四边形,
    ,故A正确,
    四边形是平行四边形,,
    不能推出四边形是菱形,故错误,
    四边形是平行四边形,,
    四边形是矩形,故C正确,
    四边形是平行四边形,,,
    四边形是正方形.故D正确.
    故选B.
    【点睛】
    本题考查的是平行四边形的性质,矩形,菱形,正方形的判定,掌握以上知识是解题的关键.
    47.(2020·黑龙江牡丹江?中考真题)如图,在平面直角坐标系中,O是菱形对角线的中点,轴且,,将菱形绕点O旋转,使点D落在x轴上,则旋转后点C的对应点的坐标是( )

    A. B. C. D.或
    【答案】D
    【解析】
    【分析】
    分点C旋转到y轴正半轴和y轴负半轴两种情况分别讨论,结合菱形的性质求解.
    【详解】
    解:根据菱形的对称性可得:当点D在x轴上时,
    A、B、C均在坐标轴上,如图,
    ∵∠BAD=60°,AD=4,
    ∴∠OAD=30°,
    ∴OD=2,
    ∴AO==OC,
    ∴点C的坐标为(0,),

    同理:当点C旋转到y轴正半轴时,
    点C的坐标为(0,),
    ∴点C的坐标为(0,)或(0,),
    故选D.
    【点睛】
    本题考查了菱形的对称性,旋转的性质,直角三角形的性质,解题的关键是要分情况讨论.
    48.(2020·黑龙江牡丹江?中考真题)如图,在矩形中,,,点E在边上,,垂足为F.若,则线段的长为( )

    A.2 B.3 C.4 D.5
    【答案】B
    【解析】
    【分析】
    证明△AFD∽△EBA,得到,求出AF,即可求出AE,从而可得EF.
    【详解】
    解:∵四边形ABCD为矩形,
    ∴AB=CD=3,BC=AD=10,AD∥BC,
    ∴∠AEB=∠DAF,
    ∴△AFD∽△EBA,
    ∴,
    ∵DF=6,
    ∴AF=,
    ∴,
    ∴AE=5,
    ∴EF=AF-AE=8-5=3.
    故选B.
    【点睛】
    本题考查了矩形的性质,相似三角形的判定和性质,勾股定理,解题的关键是掌握相似三角形的判定方法.
    49.(2020·江苏南京?中考真题)如图,在平面直角坐标系中,点在第一象限,⊙P与x轴、y轴都相切,且经过矩形的顶点C,与BC相交于点D,若⊙P的半径为5,点的坐标是,则点D的坐标是( )

    A. B. C. D.
    【答案】A
    【解析】
    【分析】
    在Rt△CPF中根据勾股定理求出PF的长,再根据垂径定理求出DF的长,进而求出OB,BD的长,从而求出点D的坐标.
    【详解】
    设切点分别为G,E,连接PG,PE,PC,PD,并延长EP交BC与F,则PG=PE=PC=5,四边形OBFE是矩形.
    ∵OA=8,
    ∴CF=8-5=3,
    ∴PF=4,
    ∴OB=EF=5+4=9.
    ∵PF过圆心,
    ∴DF=CF=3,
    ∴BD=8-3-3=2,
    ∴D(9,2).
    故选A.

    【点睛】
    本题考查了矩形的性质,坐标与图形的性质,勾股定理,以及垂径定理等知识,正确做出辅助线是解答本题的关键.
    50.(2020·湖南湘西?中考真题)如图,在平面直角坐标系中,矩形的顶点A在x轴的正半轴上,矩形的另一个顶点D在y轴的正半轴上,矩形的边.则点C到x轴的距离等于( )

    A. B. C. D.
    【答案】A
    【解析】
    【分析】

    作CE⊥y轴于E.解直角三角形求出OD,DE即可解决问题.
    【详解】

    作CE⊥y轴于E.

    在Rt△OAD中,
    ∵∠AOD=90°,AD=BC=,∠OAD=,
    ∴OD=,
    ∵四边形ABCD是矩形,
    ∴∠ADC=90°,
    ∴∠CDE+∠ADO=90°,
    又∵∠OAD+∠ADO=90°,
    ∴∠CDE=∠OAD=,
    ∴在Rt△CDE中,
    ∵CD=AB=,∠CDE=,
    ∴DE=,
    ∴点C到轴的距离=EO=DE+OD=,
    故选:A.
    【点睛】

    本题考查了解直角三角形的应用,矩形的性质,正确作出辅助线是解题的关键.
    51.(2020·山东潍坊?中考真题)如图,点E是的边上的一点,且,连接并延长交的延长线于点F,若,则的周长为( )

    A.21 B.28 C.34 D.42
    【答案】C
    【解析】
    【分析】

    根据平行四边形的性质和相似三角形的判定和性质解答即可.
    【详解】

    解:∵四边形ABCD是平行四边形,
    ∴AB∥CF,AB=CD,
    ∴△ABE∽△DFE,
    ∴,
    ∵,
    ∴AE=6,AB=8,
    ∴AD=AE+DE=6+3=9,
    ∴的周长为:(8+9)×2=34.
    故选:C.
    【点睛】

    此题考查相似三角形的判定和性质,关键是根据平行四边形的性质和相似三角形的判定和性质解答.
    52.(2020·浙江温州?中考真题)如图,在Rt△ABC中,∠ACB=90°,以其三边为边向外作正方形,过点C作CR⊥FG于点R,再过点C作PQ⊥CR分别交边DE,BH于点P,Q.若QH=2PE,PQ=15,则CR的长为( )

    A.14 B.15
    C. D.
    【答案】A
    【解析】
    【分析】
    连接EC,CH,设AB交CR于点J,先证得△ECP∽△HCQ,可得,进而可求得CQ=10,AC:BC=1:2,由此可设AC=a,则BC=2a,利用AC∥BQ,CQ∥AB,可证得四边形ABQC为平行四边形,由此可得AB=CQ=10,再根据勾股定理求得,,利用等积法求得,进而可求得CR的长.
    【详解】
    解:如图,连接EC,CH,设AB交CR于点J,
    ∵四边形ACDE,四边形BCIH都是正方形,
    ∴∠ACE=∠BCH=45°,
    ∵∠ACB=90°,∠BCI=90°,
    ∴∠ACE+∠ACB+∠BCH=180°,∠ACB+∠BCI=180°,
    ∴点E、C、H在同一直线上,点A、C、I在同一直线上,
    ∵DE∥AI∥BH,
    ∴∠CEP=∠CHQ,
    ∵∠ECP=∠QCH,
    ∴△ECP∽△HCQ,
    ∴,
    ∵PQ=15,
    ∴PC=5,CQ=10,
    ∵EC:CH=1:2,
    ∴AC:BC=1:2,
    设AC=a,则BC=2a,
    ∵PQ⊥CR,CR⊥AB,
    ∴CQ∥AB,
    ∵AC∥BQ,CQ∥AB,
    ∴四边形ABQC为平行四边形,
    ∴AB=CQ=10,
    ∵,
    ∴,
    ∴(舍负)
    ∴,,
    ∵,
    ∴,
    ∵JR=AF=AB=10,
    ∴CR=CJ+JR=14,
    故选:A.

    【点睛】
    本题考查了正方形的性质、相似三角形的判定及性质、平行四边形的判定及性质、勾股定理的应用,作出正确的辅助线并灵活运用相关图形的性质与判定是解决本题的关键.
    53.(2020·浙江台州?中考真题)把一张宽为1cm的长方形纸片ABCD折叠成如图所示的阴影图案,顶点A,D互相重合,中间空白部分是以E为直角顶点,腰长为2cm的等腰直角三角形,则纸片的长AD(单位:cm)为( )

    A. B. C. D.
    【答案】D
    【解析】
    【分析】
    如图,过点M作MH⊥A'R于H,过点N作NJ⊥A'W于J.想办法求出AR,RM,MN,NW,WD即可解决问题.
    【详解】
    解:如图,过点M作MH⊥A'R于H,过点N作NJ⊥A'W于J.

    由题意△EMN是等腰直角三角形,EM=EN=2,MN=
    ∵四边形EMHK是矩形,
    ∴EK= A'K=MH=1,KH=EM=2,
    ∵△RMH是等腰直角三角形,
    ∴RH=MH=1,RM=,同法可证NW=,
    题意AR=R A'= A'W=WD=4,
    ∴AD=AR+RM+MN+NW+DW=4++++4=.
    故答案为:D.
    【点睛】
    本题考查翻折变换,等腰直角三角形的判定和性质,矩形的性质等知识,解题的关键是学会添加常用辅助线,构造特殊三角形或特殊四边形解决问题.
    54.(2020·浙江中考真题)四边形具有不稳定性,对于四条边长确定的四边形.当内角度数发生变化时,其形状也会随之改变.如图,改变正方形ABCD的内角,正方形ABCD变为菱形ABC′D′.若∠D′AB=30°,则菱形ABC′D′的面积与正方形ABCD的面积之比是(  )

    A.1 B. C. D.
    【答案】B
    【解析】
    【分析】
    如图,连接DD',延长C'D'交AD于E,由菱形ABC'D',可得AB∥C'D',进一步说明∠ED'D=30°,得到菱形AE=AD;又由正方形ABCD,得到AB=AD,即菱形的高为AB的一半,然后分别求出菱形ABC'D'和正方形ABCD的面积,最后求比即可.
    【详解】
    解:如图:延长C'D'交AD于E
    ∵菱形ABC'D'
    ∴AB∥C'D'
    ∵∠D'AB=30°
    ∴∠A D'E=∠D'AB=30°
    ∴AE=AD
    又∵正方形ABCD
    ∴AB=AD,即菱形的高为AB的一半
    ∴菱形ABC′D′的面积为,正方形ABCD的面积为AB2.
    ∴菱形ABC′D′的面积与正方形ABCD的面积之比是.
    故答案为B.

    【点睛】
    本题主要考出了正方形的性质、菱形的性质以及含30°直角三角形的性质,其中表示出菱形ABC′D′的面积是解答本题的关键.
    55.(2020·浙江嘉兴?中考真题)已知二次函数y=x2,当a≤x≤b时m≤y≤n,则下列说法正确的是(  )
    A.当n﹣m=1时,b﹣a有最小值
    B.当n﹣m=1时,b﹣a有最大值
    C.当b﹣a=1时,n﹣m无最小值
    D.当b﹣a=1时,n﹣m有最大值
    【答案】B
    【解析】
    【分析】
    ①当b﹣a=1时,先判断出四边形BCDE是矩形,得出BC=DE=b﹣a=1,CD=BE=m,进而得出AC=n﹣m,即tan=n﹣m,再判断出0°≤∠ABC<90°,即可得出n﹣m的范围;
    ②当n﹣m=1时,同①的方法得出NH=PQ=b﹣a,HQ=PN=m,进而得出MH=n﹣m=1,而tan∠MHN=,再判断出45°≤∠MNH<90°,即可得出结论.
    【详解】
    解:①当b﹣a=1时,如图1,过点B作BC⊥AD于C,

    ∴∠BCD=90°,
    ∵∠ADE=∠BED=90°,
    ∴∠ADO=∠BCD=∠BED=90°,
    ∴四边形BCDE是矩形,
    ∴BC=DE=b﹣a=1,CD=BE=m,
    ∴AC=AD﹣CD=n﹣m,
    在Rt△ACB中,tan∠ABC==n﹣m,
    ∵点A,B在抛物线y=x2上,
    ∴0°≤∠ABC<90°,
    ∴tan∠ABC≥0,
    ∴n﹣m≥0,
    即n﹣m无最大值,有最小值,最小值为0,故选项C,D都错误;
    ②当n﹣m=1时,如图2,过点N作NH⊥MQ于H,

    同①的方法得,NH=PQ=b﹣a,HQ=PN=m,
    ∴MH=MQ﹣HQ=n﹣m=1,
    在Rt△MHQ中,tan∠MNH=,
    ∵点M,N在抛物线y=x2上,
    ∴m≥0,
    当m=0时,n=1,
    ∴点N(0,0),M(1,1),
    ∴NH=1,
    此时,∠MNH=45°,
    ∴45°≤∠MNH<90°,
    ∴tan∠MNH≥1,
    ∴≥1,
    当a,b异号时,且m=0,n=1时,a,b的差距是最大的情况,
    此时b-a=2,
    ∴b﹣a无最小值,有最大值,最大值为2,故选项A错误;
    故选:B.
    【点睛】
    此题主要考查了二次函数的性质,矩形的判定和性质,锐角三角函数,确定出∠MNH的范围是解本题的关键.
    56.(2020·山东泰安?中考真题)如图,点A,B的坐标分别为,点C为坐标平面内一点,,点M为线段的中点,连接,则的最大值为( )

    A. B. C. D.
    【答案】B
    【解析】
    【分析】

    如图所示,取AB的中点N,连接ON,MN,根据三角形的三边关系可知OM<ON+MN,则当ON与MN共线时,OM= ON+MN最大,再根据等腰直角三角形的性质以及三角形的中位线即可解答.
    【详解】

    解:如图所示,取AB的中点N,连接ON,MN,三角形的三边关系可知OM<ON+MN,则当ON与MN共线时,OM= ON+MN最大,
    ∵,
    则△ABO为等腰直角三角形,
    ∴AB=,N为AB的中点,
    ∴ON=,
    又∵M为AC的中点,
    ∴MN为△ABC的中位线,BC=1,
    则MN=,
    ∴OM=ON+MN=,
    ∴OM的最大值为
    故答案选:B.

    【点睛】

    本题考查了等腰直角三角形的性质以及三角形中位线的性质,解题的关键是确定当ON与MN共线时,OM= ON+MN最大.
    57.(2020·山东泰安?中考真题)如图,矩形中,相交于点O,过点B作交于点F,交于点M,过点D作交于点E,交于点N,连接.则下列结论:
    ①;②;
    ③;④当时,四边形是菱形.
    其中,正确结论的个数是( )

    A.1个 B.2个 C.3个 D.4个
    【答案】D
    【解析】
    【分析】

    通过判断△AND≌△CMB即可证明①,再判断出△ANE≌△CMF证明出③,再证明出△NFM≌△MEN,得到∠FNM=∠EMN,进而判断出②,通过 DF与EB先证明出四边形为平行四边形,再通过三线合一以及内角和定理得到∠NDO=∠ABD=30°,进而得到DE=BE,即可知四边形为菱形.
    【详解】

    ∵BF⊥AC
    ∴∠BMC=90°
    又∵
    ∴∠EDO=∠MBO,DE⊥AC
    ∴∠DNA=∠BMC=90°
    ∵四边形ABCD为矩形
    ∴AD=BC,AD∥BC,DC∥AB
    ∴∠ADB=∠CBD
    ∴∠ADB-∠EDO=∠CBD-∠MBO即∠AND=∠CBM
    在△AND与△CMB

    ∴△AND≌△CMB(AAS)
    ∴AN=CM,DN=BM,故①正确.
    ∵AB∥CD
    ∴∠NAE=∠MCF
    又∵∠DNA=∠BMC=90°
    ∴∠ANE=∠CMF=90°
    在△ANE与△CMF中

    ∴△ANE≌△CMF(ASA)
    ∴NE=FM,AE=CF,故③正确.
    在△NFM与△MEN中

    ∴△NFM≌△MEN(SAS)
    ∴∠FNM=∠EMN
    ∴NF∥EM,故②正确.
    ∵AE=CF
    ∴DC-FC=AB-AE,即DF=EB
    又根据矩形性质可知DF∥EB
    ∴四边形DEBF为平行四边
    根据矩形性质可知OD=AO,
    当AO=AD时,即三角形DAO为等边三角形
    ∴∠ADO=60°
    又∵DN⊥AC
    根据三线合一可知∠NDO=30°
    又根据三角形内角和可知∠ABD=180°-∠DAB-∠ADB=30°
    故DE=EB
    ∴四边形DEBF为菱形,故④正确.
    故①②③④正确
    故选D.
    【点睛】

    本题矩形性质、全等三角形的性质与证明、菱形的判定,能够找对相对应的全等三角形是解题关键.
    58.(2020·江苏无锡?中考真题)如图,等边的边长为3,点在边上,,线段在边上运动,,有下列结论:

    ①与可能相等;②与可能相似;③四边形面积的最大值为;④四边形周长的最小值为.其中,正确结论的序号为( )
    A.①④ B.②④ C.①③ D.②③
    【答案】D
    【解析】
    【分析】
    ①通过分析图形,由线段在边上运动,可得出,即可判断出与不可能相等;
    ②假设与相似,设,利用相似三角形的性质得出的值,再与的取值范围进行比较,即可判断相似是否成立;
    ③过P作PE⊥BC于E,过F作DF⊥AB于F,利用函数求四边形面积的最大值,设,可表示出,,可用函数表示出,,再根据,依据,即可得到四边形面积的最大值;
    ④作点D关于直线的对称点D1,连接D D1,与相交于点Q,再将D1Q沿着向B端平移个单位长度,即平移个单位长度,得到D2P,与相交于点P,连接PC,此时四边形的周长为:,其值最小,再由D1Q=DQ=D2P,,且∠AD1D2=120°,可得的最小值,即可得解.
    【详解】
    解:①∵线段在边上运动,,
    ∴,
    ∴与不可能相等,
    则①错误;
    ②设,
    ∵,,
    ∴,即,
    假设与相似,
    ∵∠A=∠B=60°,
    ∴,即,
    从而得到,解得或(经检验是原方程的根),
    又,
    ∴解得的或符合题意,
    即与可能相似,
    则②正确;
    ③如图,过P作PE⊥BC于E,过F作DF⊥AB于F,

    设,
    由,,得,即,
    ∴,
    ∵∠B=60°,
    ∴,
    ∵,∠A =60°,
    ∴,
    则,

    ∴四边形面积为:,
    又∵,
    ∴当时,四边形面积最大,最大值为:,
    即四边形面积最大值为,
    则③正确;
    ④如图,作点D关于直线的对称点D1,连接D D1,与相交于点Q,再将D1Q沿着向B端平移个单位长度,即平移个单位长度,得到D2P,与相交于点P,连接PC,
    ∴D1Q=DQ=D2P,,且∠AD1D2=120°,
    此时四边形的周长为:,其值最小,

    ∴∠D1AD2=30°,∠D2A D=90°,,
    ∴根据股股定理可得,,
    ∴四边形的周长为:,
    则④错误,
    所以可得②③正确,
    故选:D.
    【点睛】
    本题综合考查等边三角形的性质、相似三角形的性质与判定、利用函数求最值、动点变化问题等知识.解题关键是熟练掌握数形结合的思想方法,通过用函数求最值、作对称点求最短距离,即可得解.
    59.(2020·四川达州?中考真题)如图,,,点A在上,四边形是矩形,连接、交于点E,连接交于点F.下列4个判断:①平分;②;③;④若点G是线段的中点,则为等腰直角三角形.正确判断的个数是( )

    A.4 B.3 C.2 D.1
    【答案】A
    【解析】
    【分析】

    ①,先说明△OBD是等腰三角形,再由矩形的性质可得DE=BE,最后根据等腰三角形的性质即可判断;②证明△OFA≌△OBD即可判断;③过F作FH⊥AD,垂足为H,然后根据角平分线定理可得FH=FA,再求得∠HDF=45°,最后用三角函数即可判定;④连接AG,然后证明△OGA≌△ADE,最后根据全等三角形的性质和角的和差即可判断.
    【详解】

    解:①∵
    ∴△OBD是等腰三角形
    ∵四边形是矩形
    ∴DE=BE=BD,DA⊥OB
    ∴平分,OE⊥BD故①正确;
    ②∵OE⊥BD, DA⊥OB,即∠DAO=∠DAB
    ∴∠EDF+∠DFE=90°,∠AOF+∠AFO=90°
    ∵∠EDF=∠AOF
    ∵DA⊥OB,
    ∴OA=AD
    在△OFA和△OBD中
    ∠EDF=∠AOF ,OA=AD,∠DAO=∠DAB
    ∴△OFA≌△OBD
    ∴OF=BD,即②正确;
    ③过F作FH⊥AD,垂足为H,
    ∵平分,DA⊥OB
    ∴FH=AF
    ∵,DA⊥OB
    ∴∠HDF=45°
    ∴sin∠HDF=,即;故③正确;

    ④由②得∠EDF=∠AOF,
    ∵G为OF中点
    ∴OG=OF
    ∵DE=BE=BD,OF=BD
    ∴OG=DE
    在△OGA和△AED中
    OG=DE, ∠EDF=∠AOF,AD=OA
    ∴△OGA≌△AED
    ∴OG=EF,∠GAO=∠DAE
    ∴△GAE是等腰三角形
    ∵DA⊥OB
    ∴∠OAG+∠DAG=90°
    ∴∠DAE+∠DAG =90°,即∠GAE=90°
    ∴△GAE是等腰直角三角形,故④正确.
    故答案为A.

    【点睛】

    本题考查了全等三角形的判定与性质、矩形的性质、等腰三角形的判定与性质、角平分线的性质以及解直角三角形等知识点,考查知识点较多,故灵活应用所学知识成为解答本题的关键.


    二、填空题
    60.(2020·甘肃兰州?中考真题)如图,M、N是正方形ABCD的边CD上的两个动点,满足,连接AC交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为6,则线段CF的最小值是______.

    【答案】
    【解析】
    【分析】
    先判断出≌,得出,进而判断出≌,得出,即可判断出,根据直角三角形斜边上的中线等于斜边的一半可得,利用勾股定理列式求出OC,然后根据三角形的三边关系可知当O、F、C三点共线时,CF的长度最小.
    【详解】
    如图,

    在正方形ABCD中,,,,
    在和中,

    ≌,

    在和中,

    ≌,





    取AD的中点O,连接OF、OC,
    则,
    在中,,
    根据三角形的三边关系,,
    当O、F、C三点共线时,CF的长度最小,
    最小值,
    故答案为.
    【点睛】
    本题考查了正方形的性质,全等三角形的判定与性质,直角三角形斜边上的中线等于斜边的一半的性质,三角形的三边关系等,综合性较强,有一定的难度,确定出CF最小时点F的位置是解题关键.
    61.(2020·西藏中考真题)如图,已知平行四边形ABCD,以点A为圆心,适当长为半径画弧分别交AB,AD于点E,F,再分别以点E,F为圆心,大于EF的长为半径画弧,两弧在∠DAB的内部相交于点G,画射线AG交DC于H.若∠B=140°,则∠DHA=_____.

    【答案】20°
    【解析】
    【分析】
    先利用平行四边形的性质得到AB∥CD,AD∥BC,则利用平行线的性质可计算出∠BAD=40°,再由作法得AH平分∠BAD,所以∠BAD=∠BAD=20°,然后根据平行线的性质得到∠DHA的度数.
    【详解】
    解:∵四边形ABCD为平行四边形,
    ∴AB∥CD,AD∥BC,
    ∴∠BAD=180°﹣140°=40°,
    由作法得AH平分∠BAD,
    ∴∠BAH=∠DAH,
    ∴∠BAD=∠BAD=20°,
    ∵AB∥CD,
    ∴∠DHA=∠BAH=20°.
    故答案为20°.
    【点睛】
    本题考查了作图-基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行四边形的性质.
    62.(2020·西藏中考真题)如图,在矩形ABCD中,E为AB的中点,P为BC边上的任意一点,把沿PE折叠,得到,连接CF.若AB=10,BC=12,则CF的最小值为_____.

    【答案】8
    【解析】
    【分析】
    点F在以E为圆心、EA为半径的圆上运动,当E、F、C共线时时,此时FC的值最小,根据勾股定理求出CE,再根据折叠的性质得到BE=EF=5即可.
    【详解】
    解:如图所示,点F在以E为圆心EA为半径的圆上运动,当E、F、C共线时时,此时CF的值最小,

    根据折叠的性质,△EBP≌△EFP,
    ∴EF⊥PF,EB=EF,
    ∵E是AB边的中点,AB=10,
    ∴AE=EF=5,
    ∵AD=BC=12,
    ∴CE===13,
    ∴CF=CE﹣EF=13﹣5=8.
    故答案为8.
    【点睛】
    本题考查了折叠的性质、全等三角形的判定与性质、两点之间线段最短的综合运用,灵活应用相关知识是解答本题的关键.
    63.(2020·广西河池?中考真题)如图,菱形ABCD的周长为16,AC,BD交于点O,点E在BC上,OE∥AB,则OE的长是_____.

    【答案】2
    【解析】
    【分析】
    由菱形的性质得出AB=4,由三角形中位线定理即可得出OE的长.
    【详解】
    解:∵菱形ABCD的周长为16,
    ∴AB=BC=CD=AD=4,OA=OC,
    ∵OE∥AB,且O点是AC的中点,
    ∴OE是△ABC的中位线,
    ∴OE=AB=2,
    故答案为:2.
    【点睛】
    本题考察了菱形的性质、三角形中位线的应用过,解题的关键在于找出OE是△ABC的中位线.
    64.(2020·辽宁大连?中考真题)如图,在平面直角坐标系中,正方形的顶点A与D在函数的图象上,轴,垂足为C,点B的坐标为,则k的值为______.

    【答案】8
    【解析】
    【分析】
    如图(见解析),先根据正方形的性质、平行线的判定可得轴,从而可得点D的纵坐标为2,再根据正方形的判定与性质可得,从而可得,然后将点D的坐标代入反比例函数的解析式即可.
    【详解】
    如图,连接BD,交AC于点E,
    点B的坐标为,

    四边形ABCD是正方形,

    轴,
    轴,
    点D的纵坐标与点B的纵坐标相同,即为2,
    轴,,,
    四边形OBEC是矩形,
    又,
    四边形OBEC是正方形,


    点D的坐标为,
    将点代入反比例函数的解析式得:,
    解得,
    故答案为:8.

    【点睛】
    本题考查了反比例函数的几何应用、正方形的判定与性质等知识点,熟练运用正方形的判定与性质求出点D的坐标是解题关键.
    65.(2020·辽宁大连?中考真题)如图,矩形中,,点E在边上,与相交于点F.设,,当时,y关于x的函数解析式为_____.

    【答案】
    【解析】
    【分析】
    利用矩形的性质可求得BAD为直角三角形,即可利用勾股定理得到BD的长,求证FEDFCB,运用相似三角形的性质建立等式即可求解.
    【详解】
    ∵四边形是矩形
    ∴∠BAD=,BC=AD=8,AB=CD=6
    ∴在ABD中,BD=
    ∴FD=BD−BF=10−y
    又∵ADBC
    ∴FEDFBC



    故答案为
    【点睛】
    本题主要考查了矩形的性质,勾股定理,相似三角形的判定与性质,利用相似三角形的性质建立等式是解题的关键.
    66.(2020·辽宁鞍山?中考真题)如图,在菱形中,,点E,F分别在,上,且,与相交于点G,与相交于点H.下列结论:①;②;③若,则;④.其中正确的结论有_______.(只填序号即可)

    【答案】①③④
    【解析】
    【分析】
    根据等边三角形的性质证明△ACF≌△CDE,可判断①;过点F作FP∥AD,交CE于P点,利用平行线分线段成比例可判断③;过点B作BM⊥AG于M,BN⊥GC于N,得到点A、B、C、G四点共圆,从而证明△ABM≌△CBN,得到S四边形ABCG=S四边形BMGN,再利用S四边形BMGN=2S△BMG求出结果即可判断④;证明△BCH∽△BGC,得到,推出GH·BG=BG2-BC2,得出若等式成立,则∠BCG=90°,根据题意此条件未必成立可判断②.
    【详解】
    解:∵ABCD为菱形,
    ∴AD=CD,
    ∵AE=DF,
    ∴DE=CF,
    ∵∠ADC=60°,
    ∴△ACD为等边三角形,
    ∴∠D=∠ACD=60°,AC=CD,
    ∴△ACF≌△CDE(SAS),故①正确;
    过点F作FP∥AD,交CE于P点.
    ∵DF=2CF,
    ∴FP:DE=CF:CD=1:3,
    ∵DE=CF,AD=CD,
    ∴AE=2DE,
    ∴FP:AE=1:6=FG:AG,
    ∴AG=6FG,
    ∴CE=AF=7GF,故③正确;
    过点B作BM⊥AG于M,BN⊥GC于N,
    ∵∠AGE=∠ACG+∠CAF=∠ACG+∠GCF=60°=∠ABC,
    即∠AGC+∠ABC=180°,
    ∴点A、B、C、G四点共圆,
    ∴∠AGB=∠ACB=60°,∠CGB=∠CAB=60°,
    ∴∠AGB=∠CGB=60°,
    ∴BM=BN,又AB=BC,
    ∴△ABM≌△CBN(HL),
    ∴S四边形ABCG=S四边形BMGN,
    ∵∠BGM=60°,
    ∴GM=BG,BM=BG,
    ∴S四边形BMGN=2S△BMG=2××BG×BG=BG2,故④正确;
    ∵∠CGB=∠ACB=60°,∠CBG=∠HBC,
    ∴△BCH∽△BGC,
    ∴,
    则BG·BH=BC2,
    则BG·(BG-GH)=BC2,
    则BG2-BG·GH= BC2,
    则GH·BG=BG2-BC2,
    当∠BCG=90°时,BG2-BC2=CG2,此时GH·BG= CG2,
    而题中∠BCG未必等于90°,故②不成立,
    故正确的结论有①③④,
    故答案为:①③④.

    【点睛】
    本题考查了菱形的性质,等边三角形的判定与性质,全等三角形的判定和性质,相似三角形的判定和性质,作出辅助线构造出全等三角形,把不规则图形的面转化为两个全等三角形的面积是解题的关键.
    67.(2020·辽宁鞍山?中考真题)如图,在中,点E是的中点,,的延长线交于点F.若的面积为1,则四边形的面积为________.

    【答案】3
    【解析】
    【分析】
    根据□ABCD的对边互相平行的性质及中位线的性质知EC是△ABF的中位线;然后根证明△ABF∽△CEF,再由相似三角形的面积比是相似比的平方及△ECF的面积为1求得△ABF的面积;最后根据图示求得S四边形ABCE=S△ABF-S△CEF=3.
    【详解】
    解:∵在□ABCD中,AB∥CD,点E是CD中点,
    ∴EC是△ABF的中位线;
    在△ABF和△CEF中,
    ∠B=∠DCF,∠F=∠F,
    ∴△ABF∽△ECF,
    ∴,
    ∴S△ABF:S△CEF=1:4;
    又∵△ECF的面积为1,
    ∴S△ABF=4,
    ∴S四边形ABCE=S△ABF-S△CEF=3.
    故答案为:3.
    【点睛】
    本题综合考查了相似三角形的判定与性质、平行四边形的性质;解得此题的关键是根据平行四边形的性质及三角形的中位线的判定证明EC是△ABF的中位线,从而求得△ABF与△CEF的相似比.
    68.(2020·辽宁铁岭?中考真题)如图,以为边,在的同侧分别作正五边形和等边,连接,则的度数是____________.


    【答案】66°
    【解析】
    【分析】
    由是正五边形可得AB=AE以及∠EAB的度数,由△ABF是等边三角形可得AB=AF以及∠FAB的度数,进而可得AE=AF以及∠EAF的度数,进一步即可根据等腰三角形的性质和三角形的内角和定理求出答案.
    【详解】
    解:∵五边形是正五边形,
    ∴AB=AE,∠EAB=108°,
    ∵△ABF是等边三角形,
    ∴AB=AF,∠FAB=60°,
    ∴AE=AF,∠EAF=108°-60°=48°,
    ∴∠EFA=.
    故答案为:66°.
    【点睛】
    本题考查了正多边形的内角问题、等边三角形的性质、等腰三角形的判定和性质以及三角形的内角和定理,属于常考题型,熟练掌握上述基本知识是解题的关键.
    69.(2020·辽宁铁岭?中考真题)如图,,正方形,正方形,正方形,正方形,…,的顶点,在射线上,顶点,在射线上,连接交于点,连接交于点,连接交于点,…,连接交于点,连接交于点,…,按照这个规律进行下去,设与的面积之和为与的面积之和为与的面积之和为,…,若,则等于__________.(用含有正整数的式子表示)

    【答案】
    【解析】
    【分析】
    先证得△ADC△,推出CD=,,同理得到,,由△△,推出△ED边D上的高为,计算出,同理计算得出,,找到规律,即可求解
    【详解】
    ∵正方形,正方形,且,
    ∴△和△都是等腰直角三角形,
    ∴,
    ∴,
    同理,
    ∵正方形,正方形,边长分别为2,4,
    ∴AC∥,∥,
    ∴,
    ∴,
    ∴,,
    同理:,,
    ∵∥,
    ∴△△,
    设△和△的边和上的高分别为和,
    ∴,
    ∵,
    ∴,,
    ∴;
    同理求得:




    故答案为:.
    【点睛】
    本题考查了正方形的性质,等腰直角三角形的判定和性质,相似三角形的判定与性质在规律型问题中的应用,数形结合并善于发现规律是解题的关键.
    70.(2020·辽宁铁岭?中考真题)一张菱形纸片的边长为,高等于边长的一半,将菱形纸片沿直线折叠,使点与点重合,直线交直线于点,则的长为____________.
    【答案】或
    【解析】
    【分析】
    先根据题目中描述画出两种可能的图形,再结合勾股定理即可得解.
    【详解】
    解:由题干描述可作出两种可能的图形.
    ①MN交DC的延长线于点F,如下图所示

    ∵高AE等于边长的一半

    在Rt△ADE中,
    又∵沿MN折叠后,A与B重合


    ②MN交DC的延长线于点F,如下图所示

    同理可得,,
    此时,
    故答案为:或.
    【点睛】
    本题主要考查菱形的性质、折叠的性质、勾股定理等相关知识点,根据题意作出两种图形是解题关键.
    71.(2020·江苏泰州?中考真题)如图所示的网格由边长为个单位长度的小正方形组成,点、、、在直角坐标系中的坐标分别为,,,则内心的坐标为______.

    【答案】(2,3)
    【解析】
    【分析】
    根据A、B、C三点的坐标建立如图所示的坐标系,计算出△ABC各边的长度,易得该三角形是直角三角形,设BC的关系式为:y=kx+b,求出BC与x轴的交点G的坐标,证出点A与点G关于BD对称,射线BD是∠ABC的平分线,三角形的内心在BD上,设点M为三角形的内心,内切圆的半径为r,在BD上找一点M,过点M作ME⊥AB,过点M作MF⊥AC,且ME=MF=r,求出r的值,在△BEM中,利用勾股定理求出BM的值,即可得到点M的坐标.
    【详解】
    解:根据A、B、C三点的坐标建立如图所示的坐标系,
    根据题意可得:AB=,AC=,BC=,
    ∵,
    ∴∠BAC=90°,
    设BC的关系式为:y=kx+b,
    代入B,C,
    可得,
    解得:,
    ∴BC:,
    当y=0时,x=3,即G(3,0),
    ∴点A与点G关于BD对称,射线BD是∠ABC的平分线,
    设点M为三角形的内心,内切圆的半径为r,在BD上找一点M,过点M作ME⊥AB,过点M作MF⊥AC,且ME=MF=r,
    ∵∠BAC=90°,
    ∴四边形MEAF为正方形,
    S△ABC=,
    解得:,
    即AE=EM=,
    ∴BE=,
    ∴BM=,
    ∵B(-3,3),
    ∴M(2,3),

    故答案为:(2,3).
    【点睛】
    本题考查三角形内心、平面直角坐标系、一次函数的解析式、勾股定理和正方形的判定与性质等相关知识点,把握内心是三角形内接圆的圆心这个概念,灵活运用各种知识求解即可.
    72.(2020·辽宁丹东?中考真题)如图,在四边形中,,,,,点和点分别是和的中点,连接,,,若,则的面积是_________.

    【答案】.
    【解析】
    【分析】
    由题可得△ACD为等腰直角三角形,CD=8,可求出AD=AC=,点和点分别是和的中点,根据中位线定理和直角三角形斜边中线定理可得到EF=AD,BE=AC,从而得到EF=EB,又,得∠CAB=15°,∠CEB=30°进一步得到∠FEB=120°,又△EFB为等腰三角形,所以∠EFB=∠EBF=30°,过E作EH垂直于BF于H点,在Rt△EFH中,解直角三角形求出EH,FH,以BF为底,EH为高,即可求出△BEF的面积.
    【详解】
    解:∵,,
    ∴△ADC为等腰直角三角,
    ∵CD=8,
    ∴AD=AC=CD=,
    ∵E,F为AC,DC的中点,
    ∴FE∥AD,EF=AD=,
    ∴BE=AC=,
    ∵AD=AC,
    ∴EF=EB,△EFB为等腰三角形,
    又∵EF∥AD,
    ∴EF⊥AC,
    ∴∠FEC=90°,
    又EB=EA,
    ∴∠EAB=∠EBA=105°-90°=15°,
    ∴∠CEB=30°,
    ∴∠FEB=120°,
    ∴∠EFB=∠EBF=30°,
    过E作EH垂直于BF于H点,
    ∴BH=FH,
    在Rt△EFH中,
    ∵∠EFH=30°,
    ∴EH=EF·sin30°=×= ,
    FH=EF·cos30°=×= ,
    ∴BF=2×=,
    ∴SBEF=BF·EH=××= ,
    故答案为:.

    【点睛】
    本题考查了等腰三角形的性质,三角形中位线定理,直角三角形斜边中线定理,解直角三角形。正确的运用解题方法求出相关线段长度是解题的关键.
    73.(2020·辽宁丹东?中考真题)如图,在矩形中,,,连接,以为边,作矩形使,连接交于点;以为边,作矩形,使,连接交于点;以为边,作矩形,使,连接交于点;…按照这个规律进行下去,则的面积为_________.

    【答案】.
    【解析】
    【分析】
    先寻找规律求得的面积,再结合勾股定理以及三角形中线平分三角形的面积求得三角形面积是它所在矩形面积的,依此即可求得的面积.
    【详解】
    解:∵四边形为矩形,
    ∴∠A=∠B=90°,,,,
    ∴,
    ∴,,,
    ∵,
    ∴,

    ∴,
    ∴,
    ∴,
    同理可证, ,
    依次类推,,
    故 ,
    在矩形中,设,则,
    根据勾股定理,
    即,解得,
    ∵,即,
    同理可证,

    同理可证
    故答案为:.
    【点睛】
    本题考查矩形的性质,勾股定理,三角形中线有关的面积计算,探索与表达规律,解直角三角形.解决此题的关键有两个:①寻找规律,求得;②得出三角形面积是它所在矩形面积的.需注意标序号的时候不要混淆了.
    74.(2020·黑龙江鹤岗?中考真题)在矩形中,,,点在边上,且,连接,将沿折叠.若点的对应点落在矩形的边上,则折痕的长为______.
    【答案】或
    【解析】
    【分析】
    分两种情况:点落在AD上和CD上,首先求出a的值,再根据勾股定理求出抓痕的长即可.
    【详解】
    分两种情况:
    (1)当点落在AD上时,如图1,

    ∵四边形ABCD是矩形,

    ∵将沿AE折叠,点B的对应点落在AD边上,




    在Rt△ABE中,AB=1,BE=1,
    ∴AE=
    (2)当点落在CD上,如图2,

    ∵四边形ABCD是矩形,
    ,,
    ∵将沿AE折叠,点B的对应点落在CD边上,
    ,,,


    在和中,


    ,即,
    解得,(负值舍去)

    在Rt△ABE中,AB=1,BE=,
    ∴AE=
    故答案为:或.
    【点睛】
    本题考查翻折变换,矩形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.
    75.(2020·黑龙江鹤岗?中考真题)如图,在边长为的正方形中将沿射线平移,得到,连接、.求的最小值为______.

    【答案】
    【解析】
    【分析】
    将△ABC沿射线CA平移到△AB′C′的位置,连接C′E、AE、DE,证出四边形ABGE和四边形EGCD均为平行四边形,根据平行四边形的性质和平移图形的性质,可得C′E=CE,CG=DE,可得EC+GC=C′E+ED,当点C′、E、D在同一直线时,C′E+ED最小,由勾股定理求出C′D的值即为EC+GC的最小值.
    【详解】
    如图,将△ABC沿射线CA平移到△AB′C′的位置,连接C′E、AE、DE,

    ∵AB∥GE∥DC且AB=GE=DC,
    ∴四边形ABGE和四边形EGCD均为平行四边形,
    ∴AE∥BG,CG=DE,
    ∴AE⊥CC′,
    由作图易得,点C与点C′关于AE对称,C′E=CE,
    又∵CG=DE,
    ∴EC+GC=C′E+ED,
    当点C′、E、D在同一直线时,C′E+ED最小,
    此时,在Rt△C′D′E中,
    C′B′=4,B′D=4+4=8, C′D=,
    即EC+GC的最小值为,
    故答案为:.
    【点睛】
    本题考查正方形的性质、图形的对称性、线段最短和平行四边形的性质与判定,解题的关键是将两条线段的和转化为同一条线段求解.
    76.(2020·内蒙古呼伦贝尔?中考真题)如图,在平面直角坐标系中,正方形的顶点与坐标原点重合,点的坐标为(0,3),点在轴的正半轴上.直线分别与边相交于两点,反比例函数的图象经过点并与边相交于点,连接.点是直线上的动点,当时,点的坐标是________________.

    【答案】(1,0)或(3,2)
    【解析】
    【分析】
    根据正方形的性质以及一次函数表达式求出点D和点M坐标,从而求出反比例函数表达式,得到点N的坐标,求出MN,设点P坐标为(m,m-1),根据两点间距离表示出CP,得到方程,求解即可.
    【详解】
    解:∵正方形OABC的顶点O与坐标原点重合,点C的坐标为(0,3),
    ∴B(3,3),A(3,0),
    ∵直线y=x-1分别与边AB,OA相交于D,M两点,
    ∴可得:D(3,2),M(1,0),
    ∵反比例函数经过点D,
    k=3×2=6,
    ∴反比例函数的表达式为,令y=3,
    解得:x=2,
    ∴点N的坐标为(2,3),
    ∴MN==,
    ∵点P在直线DM上,
    设点P的坐标为(m,m-1),
    ∴CP=,
    解得:m=1或3,
    ∴点P的坐标为(1,0)或(3,2).
    故答案为:(1,0)或(3,2).
    【点睛】
    本题考查了正方形的性质,一次函数图象上点的坐标特征,两点之间的距离,反比例函数图象上点的坐标特征,解题的关键是根据点的坐标,利用待定系数法求出反比例函数解析式.
    77.(2020·山东滨州?中考真题)如图,点P是正方形ABCD内一点,且点P到点A、B、C的距离分别为则正方形ABCD的面积为________

    【答案】
    【解析】
    【分析】
    如图,将△ABP绕点B顺时针旋转90°得到△CBM,连接PM,过点B作BH⊥PM于H.首先证明∠PMC=90°,推出∠CMB=∠APB=135°,推出A,P,M共线,利用勾股定理求出AB2即可.
    【详解】
    解:如图,将△ABP绕点B顺时针旋转90°得到△CBM,连接PM,过点B作BH⊥PM于H.

    ∵BP=BM=,∠PBM=90°,
    ∴PM=PB=2,
    ∵PC=4,PA=CM=2,
    ∴PC2=CM2+PM2,
    ∴∠PMC=90°,
    ∵∠BPM=∠BMP=45°,
    ∴∠CMB=∠APB=135°,
    ∴∠APB+∠BPM=180°,
    ∴A,P,M共线,
    ∵BH⊥PM,
    ∴PH=HM,
    ∴BH=PH=HM=1,
    ∴AH=2+1,
    ∴AB2=AH2+BH2=(2+1)2+12=14+4,
    ∴正方形ABCD的面积为14+4.
    故答案为14+4.
    【点睛】
    本题考查旋转的性质,全等三角形的判定和性质,正方形的性质,解直角三角形等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题.
    78.(2020·内蒙古鄂尔多斯?中考真题)如图,已知正方形ABCD,点M是边BA延长线上的动点(不与点A重合),且AM<AB,△CBE由平移得到,若过点E作EH⊥AC,H为垂足,则有以下结论:
    ①点M位置变化,使得∠DHC=60°时,2BE=DM;
    ②无论点M运动到何处,都有DM=HM;
    ③在点M的运动过程中,四边形CEMD可能成为菱形;
    ④无论点M运动到何处,∠CHM一定大于135°.
    以上结论正确的有_____(把所有正确结论的序号都填上).

    【答案】①②③④
    【解析】
    【分析】
    ①正确.证明∠ADM=30°,即可得出结论.
    ②正确.证明△DHM是等腰直角三角形即可.
    ③正确.首先证明四边形CEMD是平行四边形,再证明,DM>CD即可判断.
    ④正确.证明∠AHM<∠BAC=45°,即可判断.
    【详解】
    解:如图,连接DH,HM.

    由题可得,AM=BE,
    ∴AB=EM=AD,
    ∵四边形ABCD是正方形,EH⊥AC,
    ∴EM=AD,∠AHE=90°,∠MEH=∠DAH=45°=∠EAH,
    ∴EH=AH,
    ∴△MEH≌△DAH(SAS),
    ∴∠MHE=∠DHA,MH=DH,
    ∴∠MHD=∠AHE=90°,△DHM是等腰直角三角形,
    ∴DM=HM,故②正确;
    当∠DHC=60°时,∠ADH=60°﹣45°=15°,
    ∴∠ADM=45°﹣15°=30°,
    ∴Rt△ADM中,DM=2AM,
    即DM=2BE,故①正确;
    ∵CD∥EM,EC∥DM,
    ∴四边形CEMD是平行四边形,
    ∵DM>AD,AD=CD,
    ∴DM>CD,
    ∴四边形CEMD不可能是菱形,故③正确,
    ∵点M是边BA延长线上的动点(不与点A重合),且AM<AB,
    ∴∠AHM<∠BAC=45°,
    ∴∠CHM>135°,故④正确;
    由上可得正确结论的序号为①②③.
    故答案为:①②③④.
    【点睛】
    本题考查正方形的性质,全等三角形的判定和性质,等腰直角三角形的判定和性质,直角三角形30度角的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考填空题中的压轴题.
    79.(2020·内蒙古鄂尔多斯?中考真题)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,∠BCD=30°,CD=2,则阴影部分面积S阴影=_____.

    【答案】
    【解析】
    【分析】
    连接OC.证明OC∥BD,推出S阴=S扇形OBD即可解决问题.
    【详解】
    解:连接OC.

    ∵AB⊥CD,
    ∴,CE=DE=,
    ∴∠COD=∠BOD,
    ∵∠BOD=2∠BCD=60°,
    ∴∠COB=60°,
    ∵OC=OB=OD,
    ∴△OBC,△OBD都是等边三角形,
    ∴OC=BC=BD=OD,
    ∴四边形OCBD是菱形,
    ∴OC//BD,
    ∴S△BDC=S△BOD,
    ∴S阴=S扇形OBD,
    ∵OD==2,
    ∴S阴==,
    故答案为:.
    【点睛】
    本题考查扇形的面积,菱形的判定和性质,平行线的判定和性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.
    80.(2020·内蒙古鄂尔多斯?中考真题)如图,平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为6,4,反比例函数y=(x>0)的图象经过A,B两点,若菱形ABCD的面积为2,则k的值为_____.

    【答案】12
    【解析】
    【分析】
    过点A作x轴的垂线,交CB的延长线于点E,根据A,B两点的纵坐标分别为6,4,可得出横坐标,即可表示AE,BE的长,根据菱形的面积为2,求得AE的长,在Rt△AEB中,计算BE的长,列方程即可得出k的值.
    【详解】
    解:过点A作x轴的垂线,交CB的延长线于点E,

    ∵BC∥x轴,
    ∴AE⊥BC,
    ∵A,B两点在反比例函数y=(x>0)的图象,且纵坐标分别为6,4,
    ∴A(,6),B(,4),
    ∴AE=2,BE=﹣=,
    ∵菱形ABCD的面积为2,
    ∴BC×AE=2,即BC=,
    ∴AB=BC=,
    在Rt△AEB中,BE===1,
    ∴k=1,
    ∴k=12,
    故答案为:12.
    【点睛】
    本题考查了反比例函数和几何综合,菱形的性质,勾股定理,掌握数形结合的思想是解题关键.
    81.(2020·云南中考真题)已知四边形是矩形,点是矩形的边上的点,且.若,,则的长是___.
    【答案】 或
    【解析】
    【分析】
    根据,则在的中垂线上,作的中垂线交于 交于,所以:如图的都符合题意,先证明四边形是菱形,再利用菱形的性质与勾股定理可得答案.
    【详解】
    解: ,
    在的中垂线上,
    作的中垂线交于 交于,
    所以:如图的都符合题意,
    矩形






    四边形是菱形,

    ,, ,


    设 则





    的长为: 或

    故答案为: 或
    【点睛】
    本题考查的是矩形的性质,菱形的判定与性质,勾股定理的应用,线段的垂直平分线的性质,掌握以上知识是解题的关键.
    82.(2020·辽宁营口?中考真题)如图,在菱形ABCD中,对角线AC,BD交于点O,其中OA=1,OB=2,则菱形ABCD的面积为_____.

    【答案】4
    【解析】
    【分析】
    根据菱形的面积等于对角线之积的一半可得答案.
    【详解】
    解:∵OA=1,OB=2,
    ∴AC=2,BD=4,
    ∴菱形ABCD的面积为×2×4=4.
    故答案为:4.
    【点睛】
    本题考查菱形的性质,关键在于熟练掌握基础知识.
    83.(2020·湖南益阳?中考真题)若一个多边形的内角和是540°,则该多边形的边数是_____.
    【答案】5
    【解析】
    【分析】
    n边形的内角和公式为,由此列方程求n.
    【详解】
    解:设这个多边形的边数是n,
    则,
    解得,
    故答案为:5.
    【点睛】
    本题考查了多边形的内角和,掌握多边形的内角和公式,构建方程即可求解.
    84.(2020·内蒙古赤峰?中考真题)一个边形的内角和是它外角和的4倍,则______.
    【答案】10
    【解析】
    【分析】
    利用多边形的内角和公式与外角和公式,根据一个n边形的内角和是其外角和的4倍列出方程求解即可.
    【详解】
    多边形的外角和是360°,根据题意得:

    解得:.
    故答案为:10.
    【点睛】
    本题主要考查了多边形内角和公式及外角的性质.求多边形的边数,可以转化为方程的问题来解决.
    85.(2020·湖南湘西?中考真题)若多边形的内角和是外角和的2倍,则该多边形是_____边形.
    【答案】六
    【解析】
    【分析】
    设这个多边形的边数为,根据内角和公式和外角和公式,列出等式求解即可.
    【详解】
    设这个多边形的边数为,
    ∴,
    解得:,
    故答案为:六.
    【点睛】
    本题考查了多边形的内角和与外角和,是基础知识要熟练掌握内角和公式和外角和公式.
    86.(2020·江苏淮安?中考真题)已知直角三角形斜边长为16,则这个直角三角形斜边上的中线长为__________.
    【答案】8.
    【解析】
    【分析】
    直接根据直角三角形斜边中线定理可以得出本题答案.
    【详解】
    ∵直角三角形斜边的长为16,
    ∴直角三角形斜边上的中线长是:,
    故答案为:8.
    【点睛】
    本题主要考查了直角三角形斜边中线定理,熟记定理即可得出答案.
    87.(2020·四川凉山?中考真题)如图,的对角线AC、BD相交于点O,交AD于点E,若OA=1,的周长等于5,则的周长等于__________.

    【答案】16
    【解析】
    【分析】
    根据已知可得E为AD的中点,OE是△ABD的中位线,据此可求得AB,根据OA=1,的周长等于5,可求得具体的结果.
    【详解】
    ∵四边形ABCD是平行四边形,AC、BD是对角线,
    ∴O为BD和AC的中点,
    又∵,
    ∴,,E为AD的中点,
    又∵OA=1,的周长等于5,
    ∴AE+OE=4,
    ∴,
    ∴的周长=.
    故答案为16.
    【点睛】
    本题主要考查了平行四边形的性质,结合三角形中位线定理判定是解题的关键.
    88.(2020·浙江舟山?中考真题)如图所示,平行四边形ABCD的对角线AC、BD相交于点O,试添加一个条件:   ,使得平行四边形ABCD为菱形.

    【答案】AD=DC(答案不唯一)
    【解析】
    试题分析:由四边形ABCD是平行四边形,
    添加AD=DC,根据邻边相等的平行四边形是菱形的判定,可使得平行四边形ABCD为菱形;
    添加AC⊥BD,根据对角线互相垂直的平行四边形是菱形的判定,可使得平行四边形ABCD为菱形.
    答案不唯一.
    89.(2020·江苏镇江?中考真题)如图,点P是正方形ABCD内位于对角线AC下方的一点,∠1=∠2,则∠BPC的度数为_____°.

    【答案】135
    【解析】
    【分析】
    由正方形的性质可得∠ACB=∠BAC=45°,可得∠2+∠BCP=45°=∠1+∠BCP,由三角形内角和定理可求解.
    【详解】
    解:∵四边形ABCD是正方形,
    ∴∠ACB=∠BAC=45°,
    ∴∠2+∠BCP=45°,
    ∵∠1=∠2,
    ∴∠1+∠BCP=45°,
    ∵∠BPC=180°﹣∠1﹣∠BCP,
    ∴∠BPC=135°,
    故答案为:135.
    【点睛】
    本题考查了正方形的性质,三角形内角和定理,掌握正方形的性质是本题的关键.
    90.(2020·辽宁大连?中考真题)如图,菱形中,,则_____.

    【答案】
    【解析】
    【分析】
    利用菱形的性质可得到∠BAC=∠BCA=∠ACD=,再利用三角形的内角和定理即可求解.
    【详解】
    ∵四边形ABCD为菱形
    ∴AC平分∠DCB,DCAB
    ∴∠BAC=∠BCA=∠ACD=
    ∴在中,∠ABC=−∠BAC−∠BCA=−−=
    故答案为:
    【点睛】
    本题主要考查了菱形的性质,灵活运用菱形的性质求得角的度数是解题的关键.
    91.(2020·四川凉山?中考真题)如图,矩形ABCD中,AD=12,AB=8,E是AB上一点,且EB=3,F是BC上一动点,若将沿EF对折后,点B落在点P处,则点P到点D的最短距为 .

    【答案】
    【解析】
    【分析】
    如图,连接利用三角形三边之间的关系得到最短时的位置,如图利用勾股定理计算,从而可得答案.
    【详解】
    解:如图,连接
    则>,
    为定值,
    当落在上时,最短,

              图
    如图,连接,
    由勾股定理得:

    即的最小值为:
    故答案为:

             图
    【点睛】
    本题考查的是矩形的性质,考查利用轴对称求线段的最小值问题,同时考查了勾股定理的应用,掌握以上知识是解题的关键.
    92.(2020·四川绵阳?中考真题)如图,在平面直角坐标系xOy中,一次函数的图象与反比例函数y=(k<0)的图象在第二象限交于A(﹣3,m),B(n,2)两点.
    (1)当m=1时,求一次函数的解析式;
    (2)若点E在x轴上,满足∠AEB=90°,且AE=2﹣m,求反比例函数的解析式.

    【答案】(1);(2).
    【解析】
    【分析】
    (1)将点坐标代入反比例函数解析式中求出,进而得出点坐标,最后用待定系数法求出直线的解析式;
    (2)先判断出,进而得出,得出,,即,再求出,进而得出,,即,再判断出,得出,得出,最后用勾股定理求出,即可得出结论.
    【详解】
    解:(1)当时,点,
    点在反比例函数的图象上,

    反比例函数的解析式为;
    点在反比例函数图象上,


    设直线的解析式为,则,

    直线的解析式为;
    (2)如图,过点作轴于,过点作轴于,过点作于,交于,

    则四边形是矩形,
    ,,
    ,,



    在和中,,

    ,,

    点,在反比例函数的图象上,


    ,,

    ,,





    在中,,,根据勾股定理得,,



    反比例函数的解析式为.
    【点睛】
    本题是反比例函数综合题,主要考查了待定系数法,勾股定理,矩形的判定和性质,全等三角形的判定和性质,构造出是解本题的关键.
    93.(2020·四川绵阳?中考真题)如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为_____.

    【答案】
    【解析】
    【分析】
    取AD的中点O,连接OM,过点M作ME⊥BC交BC的延长线于E,点点O作OF⊥BC于F,交CD于G,则OM+ME≥OF.求出OM,OF即可解决问题.
    【详解】
    解:取AD的中点O,连接OM,过点M作ME⊥BC交BC的延长线于E,点点O作OF⊥BC于F,交CD于G,则OM+ME≥OF.

    ∵∠AMD=90°,AD=4,OA=OD,
    ∴OM=AD=2,
    ∵AB∥CD,
    ∴∠GCF=∠B=60°,
    ∴∠DGO=∠CGE=30°,
    ∵AD=BC,
    ∴∠DAB=∠B=60°,
    ∴∠ADC=∠BCD=120°,
    ∴∠DOG=30°=∠DGO,
    ∴DG=DO=2,
    ∵CD=4,
    ∴CG=2,
    ∴OG=2,GF=,OF=3,
    ∴ME≥OF﹣OM=3﹣2,
    ∴当O,M,E共线时,ME的值最小,最小值为3﹣2.
    【点睛】
    本题考查解直角三角形,垂线段最短,直角三角形斜边中线的性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.
    94.(2020·江苏宿迁?中考真题)如图,在△ABC中,AB=AC,∠BAC的平分线AD交BC于点D,E为AB的中点,若BC=12,AD=8,则DE的长为_____.

    【答案】5
    【解析】
    【分析】
    利用勾股定理求出AB,再利用直角三角形斜边中线的性质求解即可.
    【详解】
    解:∵AB=AC,AD平分∠BAC,
    ∴AD⊥BC,BD=CD=6,
    ∴∠ADB=90°,
    ∴AB=,
    ∵E为AB的中点,
    ∴DE=AB=5,
    故答案为:5.
    【点睛】
    本题考查了等腰三角形的性质,勾股定理,直角三角形斜边中线的性质等知识,解题的关键是熟练掌握基本知识.
    95.(2020·江苏宿迁?中考真题)如图,在矩形ABCD中,AB=1,AD=,P为AD上一个动点,连接BP,线段BA与线段BQ关于BP所在的直线对称,连接PQ,当点P从点A运动到点D时,线段PQ在平面内扫过的面积为_____.

    【答案】
    【解析】
    【分析】
    由矩形的性质求出∠ABQ=120°,由矩形的性质和轴对称性可知,△BOQ≌△DOC,根据S阴影部分=S四边形ABQD﹣S扇形ABQ=S四边形ABOD+S△BOQ﹣S扇形ABQ可求出答案.
    【详解】
    ∵当点P从点A运动到点D时,线段BQ的长度不变,
    ∴点Q运动轨迹是圆弧,如图,阴影部分的面积即为线段PQ在平面内扫过的面积,

    ∵矩形ABCD中,AB=1,AD=,
    ∴∠ABC=∠BAC=∠C=∠Q=90°,
    ∴∠ADB=∠DBC=∠ODB=∠OBQ=30°,
    ∴∠ABQ=120°,
    由轴对称性得:BQ=BA=CD,
    在△BOQ和△DOC中,

    ∴△BOQ≌△DOC,
    ∴S阴影部分=S四边形ABQD﹣S扇形ABQ=S四边形ABOD+S△BOQ﹣S扇形ABQ,
    =S四边形ABOD+S△COD﹣S扇形ABQ,
    =S矩形ABCD﹣S△ABQ=1×-.
    故答案为:.
    【点睛】
    本题考查了矩形的性质,扇形的面积公式,轴对称的性质,熟练掌握矩形的性质是解题的关键.
    96.(2020·辽宁沈阳?中考真题)如图,在矩形中,,,对角线相交于点,点为边上一动点,连接,以为折痕,将折叠,点的对应点为点,线段与相交于点.若为直角三角形,则的长__________.

    【答案】或1
    【解析】
    【分析】
    先根据矩形的性质、折叠的性质可得,,设,从而可得,再根据直角三角形的定义分和两种情况,然后分别利用相似三角形的判定与性质、勾股定理求解即可得.
    【详解】
    四边形ABCD是矩形,,


    由折叠的性质可知,

    设,则
    由题意,分以下两种情况:
    (1)如图1,当时,为直角三角形

    在和中,

    ,即
    解得

    在中,,即
    解得

    (2)如图2,当时,为直角三角形

    ,即
    在和中,

    ,即
    解得




    ,即
    解得

    综上,DP的长为或1
    故答案为:或1.

    【点睛】
    本题考查了矩形的性质、折叠的性质、相似三角形的判定与性质、勾股定理等知识点,依据题意,正确画出图形,并分两种情况讨论是解题关键.
    97.(2020·辽宁沈阳?中考真题)如图,在平行四边形中,点为边上一点,,点,点分别是中点,若,则的长为__________.

    【答案】8
    【解析】
    【分析】

    先根据三角形中位线定理可得BC的长,再根据平行四边形的性质可得AD的长,然后根据即可得.
    【详解】

    点,点分别是中点
    是的中位线

    四边形ABCD是平行四边形



    故答案为:8.
    【点睛】

    本题考查了三角形中位线定理、平行四边形的性质等知识点,熟记三角形中位线定理是解题关键.




















    相关试卷

    初中数学中考复习 专题66概率(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版):

    这是一份初中数学中考复习 专题66概率(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版),共77页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    初中数学中考复习 专题48圆(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版):

    这是一份初中数学中考复习 专题48圆(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版),共205页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    初中数学中考复习 专题45四边形(4)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版):

    这是一份初中数学中考复习 专题45四边形(4)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版),共280页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map