终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    初中数学中考复习 专题45四边形(4)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版)

    立即下载
    加入资料篮
    初中数学中考复习 专题45四边形(4)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版)第1页
    初中数学中考复习 专题45四边形(4)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版)第2页
    初中数学中考复习 专题45四边形(4)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版)第3页
    还剩277页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学中考复习 专题45四边形(4)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版)

    展开

    这是一份初中数学中考复习 专题45四边形(4)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版),共280页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。
    专题45四边形(4)(全国一年)
    学校:___________姓名:___________班级:___________考号:___________



    一、填空题
    1.(2020·贵州黔东南?中考真题)如图,矩形ABCD中,AB=2,BC=,E为CD的中点,连接AE、BD交于点P,过点P作PQ⊥BC于点Q,则PQ=_____.

    【答案】
    【解析】
    【分析】
    根据矩形的性质得到AB∥CD,AB=CD,AD=BC,∠BAD=90°,根据线段中点的定义得到DE=CD=AB,根据相似三角形的判定证明△ABP∽△EDP,再利用相识三角形的性质和判定即可得到结论.
    【详解】
    解:∵四边形ABCD是矩形,
    ∴AB∥CD,AB=CD,AD=BC,∠BAD=90°,
    ∵E为CD的中点,
    ∴DE=CD=AB,
    ∴△ABP∽△EDP,
    ∴=,
    ∴=,
    ∴=,
    ∵PQ⊥BC,
    ∴PQ∥CD,
    ∴△BPQ∽△DBC,
    ∴==,
    ∵CD=2,
    ∴PQ=,
    故答案为:.
    【点睛】
    本题主要考查了矩形的性质,相似三角形的判定和性质的应用,运用矩形的性质和相似三角形判定和性质证明△ABP∽△EDP得到=是解题的关键.
    2.(2020·贵州遵义?中考真题)如图,对折矩形纸片使与重合,得到折痕,再把纸片展平.是上一点,将沿折叠,使点的对应点落在上.若,则的长是_________.

    【答案】
    【解析】
    【分析】
    在Rt△A´BM中,解直角三角形求出∠BA′M=30°,再证明∠ABE=30°即可解决问题.
    【详解】
    解:∵将矩形纸片ABCD对折一次,使边AD与BC重合,得到折痕MN,
    ∴AB=2BM,∠A′MB=90°,MN∥BC.
    ∵将△ABE沿BE折叠,使点A的对应点A′落在MN上.
    ∴A′B=AB=2BM.
    在Rt△A′MB中,∵∠A′MB=90°,
    ∴sin∠MA′B=,
    ∴∠MA′B=30°,
    ∵MN∥BC,
    ∴∠CBA′=∠MA′B=30°,
    ∵∠ABC=90°,
    ∴∠ABA′=60°,
    ∴∠ABE=∠EBA′=30°,
    ∴BE=.
    故答案为:.
    【点睛】
    本题考查了矩形与折叠,锐角三角函数的定义,平行线的性质,熟练掌握并灵活运用翻折变换的性质是解题的关键.
    3.(2020·浙江衢州?中考真题)小慧用图1中的一副七巧板拼出如图2所示的“行礼图”,已知正方形ABCD的边长为4dm,则图2中h的值为_____dm.

    【答案】
    【解析】
    【分析】
    根据七巧板的特征,依次得到②④⑥⑦的高,再相加即可求解.
    【详解】
    解:∵正方形ABCD的边长为4dm,
    ∴②的斜边上的高是2dm,④的高是1dm,⑥的斜边上的高是1dm,⑦的斜边上的高是dm,
    ∴图2中h的值为(4+)dm.
    故答案为:(4+).
    【点睛】
    本题主要考查正方形的性质,解题的关键是求出②④⑥⑦的高.
    4.(2020·贵州黔西?中考真题)如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平,再一次折叠,使点D落到EF上点G处,并使折痕经过点A,已知BC=2,则线段EG的长度为________.

    【答案】
    【解析】
    【分析】
    直接利用翻折变换的性质以及直角三角形的性质得出∠2=∠4,再利用平行线的性质得出∠1=∠2=∠3,进而得出答案.
    【详解】
    解:如答图,由第一次折叠得EF⊥AD,AE=DE,
    ∴∠AEF=90°,AD=2AE.
    ∵四边形ABCD是矩形,
    ∴∠D=∠DAB=90°,
    ∴∠AEF=∠D,
    ∴EF∥CD,
    ∴△AEN∽△ADM,
    ∴==,
    ∴AN=AM,
    ∴AN=MN,
    又由第二次折叠得∠AGM=∠D=90°,
    ∴NG=AM,
    ∴AN=NG,
    ∴∠2=∠4.
    由第二次折叠得∠1=∠2,
    ∴∠1=∠4.
    ∵AB∥CD,EF∥CD,
    ∴EF∥AB,∴∠3=∠4,
    ∴∠1=∠2=∠3.
    ∵∠1+∠2+∠3=∠DAB=90°,
    ∴∠1=∠2=∠3=30°.
    ∵四边形ABCD是矩形,
    ∴AD=BC=2.
    由第二次折叠得AG=AD=2.
    由第一次折叠得AE=AD=×2=1.
    在Rt△AEG中,由勾股定理得EG===,
    故答案为:.

    【点睛】
    此题主要考查了翻折变换的性质以及矩形的性质,正确得出∠2=∠4是解题关键.
    5.(2020·贵州铜仁?中考真题)如图,在矩形ABCD中,AD=4,将∠A向内翻析,点A落在BC上,记为A1,折痕为DE.若将∠B沿EA1向内翻折,点B恰好落在DE上,记为B1,则AB=_____.

    【答案】
    【解析】
    【分析】
    依据△A1DB1≌△A1DC(AAS),即可得出A1C=A1B1,再根据折叠的性质,即可得到A1C=BC=2,最后依据勾股定理进行计算,即可得到CD的长,即AB的长.
    【详解】
    解:由折叠可得,A1D=AD=4,∠A=∠EA1D=90°,∠BA1E=∠B1A1E,BA1=B1A1,∠B=∠A1B1E=90°,
    ∴∠EA1B1+∠DA1B1=90°=∠BA1E+∠CA1D,
    ∴∠DA1B1=∠CA1D,
    又∵∠C=∠A1B1D,A1D=A1D,
    ∴△A1DB1≌△A1DC(AAS),
    ∴A1C=A1B1,
    ∴BA1=A1C=BC=2,
    ∴Rt△A1CD中,CD==,
    ∴AB=.
    故答案为:.
    【点睛】
    本题考查矩形与折叠,准确判断合适的全等三角形求出A1C=BC=2是解题的关键.
    6.(2020·浙江温州?中考真题)点P,Q,R在反比例函数(常数k>0,x>0)图象上的位置如图所示,分别过这三个点作x轴、y轴的平行线.图中所构成的阴影部分面积从左到右依次为S1,S2,S3.若OE=ED=DC,S1+S3=27,则S2的值为_______.

    【答案】
    【解析】
    【分析】
    利用反比例函数系数的几何意义,及OE=ED=DC求解,然后利用列方程求解即可得到答案.
    【详解】
    解:由题意知:矩形的面积


    同理:矩形,矩形的面积都为,







    故答案为:
    【点睛】
    本题考查的是矩形的性质,反比例函数的系数的几何意义,掌握以上性质是解题的关键.
    7.(2020·浙江温州?中考真题)如图,在河对岸有一矩形场地ABCD,为了估测场地大小,在笔直的河岸l上依次取点E,F,N,使AE⊥l,BF⊥l,点N,A,B在同一直线上.在F点观测A点后,沿FN方向走到M点,观测C点发现∠1=∠2.测得EF=15米,FM=2米,MN=8米,∠ANE=45°,则场地的边AB为_______米,BC为_______米.

    【答案】
    【解析】
    【分析】
    过点C作CP⊥EF于点P,过点B作直线GH∥EF交AE于点G,交CP于点H,如图,则△ABG、△BCH都是等腰直角三角形,四边形BGEF、BHPF是矩形,于是可根据等腰直角三角形的性质和勾股定理依次求出AG、BG、AB的长,设FP=BH=CH=x,则MP=x-2,CP=x+10,易证△AEF∽△CPM,然后根据相似三角形的性质即可得到关于x的方程,解方程即可求出x,再根据勾股定理即可求出BC的长.
    【详解】
    解:过点C作CP⊥EF于点P,过点B作直线GH∥EF交AE于点G,交CP于点H,如图,则GH⊥AE,GH⊥CP,
    ∴四边形BGEF、BHPF是矩形,
    ∵∠ANE=45°,∴∠NAE=45°,
    ∴AE=EN=EF+FM+MN=15+2+8=25,
    ∵∠ABG=45°,∴∠GAB=45°,
    ∴AG=BG=EF=15,
    ∴,GE=BF=PH=10,
    ∵∠ABG=45°,∠ABC=90°,∴∠CBH=45°,
    ∴∠BCH=45°,∴BH=CH,

    设FP=BH=CH=x,则MP=x-2,CP=x+10,
    ∵∠1=∠2,∠AEF=∠CPM=90°,
    ∴△AEF∽△CPM,
    ∴,即,解得:x=20,
    即BH=CH=20,
    ∴.
    ∴米,米.
    故答案为:,.
    【点睛】
    本题考查了等腰直角三角形的判定和性质、矩形的判定和性质、勾股定理以及相似三角形的判定和性质等知识,属于常考题型,正确作出辅助线、熟练掌握相关知识是解题的关键.
    8.(2020·贵州遵义?中考真题)如图,对折矩形纸片ABCD使AD与BC重合,得到折痕MN,再把纸片展平.E是AD上一点,将△ABE沿BE折叠,使点A的对应点A′落在MN上.若CD=5,则BE的长是_____.

    【答案】
    【解析】
    【分析】
    在Rt△A'BM中,利用轴对称的性质与锐角三角函数求出∠BA′M=30°,再证明∠ABE=30°即可解决问题.
    【详解】
    解:∵将矩形纸片ABCD对折一次,使边AD与BC重合,得到折痕MN,
    ∴AB=2BM,∠A′MB=90°,MN∥BC.
    ∵将△ABE沿BE折叠,使点A的对应点A′落在MN上.
    ∴A′B=AB=2BM.
    在Rt△A′MB中,∵∠A′MB=90°,
    ∴sin∠MA′B= =,
    ∴∠MA′B=30°,
    ∵MN∥BC,
    ∴∠CBA′=∠MA′B=30°,
    ∵∠ABC=90°, ∴∠ABA′=60°,
    ∴∠ABE=∠EBA′=30°,


    故答案为:.
    【点睛】
    本题考查了矩形的性质,翻折变换,锐角三角函数的定义,平行线的性质,熟练掌握并灵活运用翻折变换的性质是解题的关键.
    9.(2020·浙江杭州?中考真题)如图是一张矩形纸片,点E在AB边上,把沿直线CE对折,使点B落在对角线AC上的点F处,连接DF.若点E,F,D在同一条直线上,AE=2,则DF=_____,BE=_____.

    【答案】2 ﹣1
    【解析】
    【分析】
    先根据矩形的性质得到,,再根据折叠的性质得到,,,然后根据全等三角形的性质得到;最后根据相似三角形的性质即可得BE的值.
    【详解】
    ∵四边形ABCD是矩形
    ∴,
    ∵把沿直线CE对折,使点B落在对角线AC上的点F处
    ∴,,
    ∴,


    在和中,






    ∴,即

    解得或(不符题意,舍去)

    故答案为:2,.
    【点睛】
    本题考查了矩形的性质、折叠的性质、三角形全等的判定定理与性质、相似三角形的判定与性质等知识点,根据矩形与折叠的性质,正确找出两个相似三角形是解题关键.
    10.(2020·浙江绍兴?中考真题)如图1,直角三角形纸片的一条直角边长为2,剪四块这样的直角三角形纸片,把它们按图2放入一个边长为3的正方形中(纸片在结合部分不重叠无缝隙),则图2中阴影部分面积为_____.

    【答案】4.
    【解析】
    【分析】
    根据题意和图形,可以得到直角三角形的一条直角边的长和斜边的长,从而可以得到直角三角形的另一条直角边长,再根据图形,可知阴影部分的面积是四个直角三角形的面积,然后代入数据计算即可.
    【详解】
    解:由题意可得,
    直角三角形的斜边长为3,一条直角边长为2,
    故直角三角形的另一条直角边长为:,
    故阴影部分的面积是:,
    故答案为:4.
    【点睛】
    此题考查勾股定理解三角形,正方形的性质,正确理解正方形的边长3与直角三角形的关系是解题的关键.
    11.(2020·浙江台州?中考真题)用四块大正方形地砖和一块小正方形地砖拼成如图所示的实线图案,每块大正方形地砖面积为a,小正方形地砖面积为依次连接四块大正方形地砖的中心得到正方形ABCD.则正方形ABCD的面积为____________(用含a,b的代数式表示).

    【答案】
    【解析】
    【分析】
    如图,连接AE、AF,先证明△GAE≌△HAF,由此可证得,进而同理可得,根据正方形ABCD的面积等于四个相同四边形的面积之和及小正方形的面积即可求得答案.
    【详解】
    解:如图,连接AE、AF,
    ∵点A为大正方形的中心,
    ∴AE=AF,∠EAF=90°,
    ∴∠AEF=∠AFE=45°,
    ∵∠GEF=90°,
    ∴∠AEG=∠GEF-∠AEF=45°,
    ∴∠AEG=∠AFE,
    ∵四边形ABCD为正方形,
    ∴∠DAB=∠EAF=90°,
    ∴∠GAE=∠HAF,
    在△GAE与△HAF中,

    ∴△GAE≌△HAF(ASA),
    ∴,
    ∴,
    即,
    ∵,
    ∴,
    ∴同理可得:,
    即,
    故答案为:.

    【点睛】
    本题考查了正方形的性质及全等三角形的判定及性质,熟练掌握正方形的性质并能作出正确的辅助线是解决本题的关键.
    12.(2020·浙江衢州?中考真题)图1是由七根连杆链接而成的机械装置,图2是其示意图.已知O,P两点固定,连杆PA=PC=140cm,AB=BC=CQ=QA=60cm,OQ=50cm,O,P两点间距与OQ长度相等.当OQ绕点O转动时,点A,B,C的位置随之改变,点B恰好在线段MN上来回运动.当点B运动至点M或N时,点A,C重合,点P,Q,A,B在同一直线上(如图3).
    (1)点P到MN的距离为_____cm.
    (2)当点P,O,A在同一直线上时,点Q到MN的距离为_____cm.

    【答案】160
    【解析】
    【分析】
    (1)如图3中,延长PO交MN于T,过点O作OH⊥PQ于H.解直角三角形求出PT即可.
    (2)如图4中,当O,P,A共线时,过Q作QH⊥PT于H.设HA=xcm.解直角三角形求出HT即可.
    【详解】
    解:(1)如图3中,延长PO交MN于T,过点O作OH⊥PQ于H.

    由题意:OP=OQ=50cm,PQ=PA﹣AQ=14﹣=60=80(cm),PM=PA+BC=140+60=200(cm),PT⊥MN,
    ∵OH⊥PQ,
    ∴PH=HQ=40(cm),
    ∵cos∠P==,
    ∵=,
    ∴PT=160(cm),
    ∴点P到MN的距离为160cm,
    故答案为160.
    (2)如图4中,当O,P,A共线时,过Q作QH⊥PT于H.设HA=xcm.

    由题意AT=PT﹣PA=160﹣140=20(cm),OA=PA﹣OP=140﹣50=90(cm),OQ=50cm,AQ=60cm,
    ∵QH⊥OA,
    ∴QH2=AQ2﹣AH2=OQ2﹣OH2,
    ∴602﹣x2=502﹣(90﹣x)2,
    解得x=,
    ∴HT=AH+AT=(cm),
    ∴点Q到MN的距离为cm.
    故答案为.
    【点睛】
    本题考查解直角三角形的应用,等腰三角形的性质,菱形的性质等知识,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题.
    13.(2020·新疆中考真题)如图,在△ABC中,∠A=90°,∠B=60°,AB=2,若D是BC边上的动点,则2AD+DC的最小值为_____.

    【答案】6
    【解析】
    【分析】
    取AC的中点F,过F作于G,延长FG至E,使EG=FG,连接AE交BC于D,则 此时最短,证明此时D为BC的中点,证明CD=2DF,从而可得答案.
    【详解】
    解:如图,

    取AC的中点F,过F作于G,延长FG至E,使EG=FG,连接AE交BC于D,则 此时最短,


    过A作于H,则由








    为BC的中点,




    即的最小值为6.
    故答案为:6.

    【点睛】
    本题考查的是利用轴对称求最小值问题,考查了锐角三角函数,三角形的相似的判定与性质,直角三角形的性质,勾股定理的应用,掌握以上知识是解题的关键.
    14.(2020·浙江绍兴?中考真题)将两条邻边长分别为,1的矩形纸片剪成四个等腰三角形纸片(无余纸片),各种剪法剪出的等腰三角形中,其中一个等腰三角形的腰长可以是下列数中的_____(填序号).
    ①,②1,③﹣1,④,⑤.
    【答案】①②③④.
    【解析】
    【分析】
    首先作出图形,再根据矩形的性质和等腰三角形的判定即可求解.
    【详解】
    解:如下图所示:在BC上截取BE=1,连接AE

    ∴△ABE为等腰直角三角形,AB=BE=1,AE=,CE=BC-BE=
    ∴∠BAE=45°,∠EAD=90°-∠BAE=45°
    在AE上截取AF=1,连接DF、CF
    ∴EF=AE-AF==CE
    ∴△EFC为等腰三角形,腰长为
    过点F作FG⊥AD于G
    ∴AG=AF·cos∠FAG=
    ∴DG=AD-AG=
    ∴FG垂直平分AD
    ∴AF=FD=1
    ∴△AFD为等腰三角形,腰长为1
    △DFC为等腰三角形,腰长为1;
    如下图所示:在AD上截取DF=1,连接BF

    ∴△DFC为等腰直角三角形,腰长为1,AF=AD-DF=
    根据勾股定理可得CF=
    ∴△CBF为等腰三角形,腰长为
    在AB上截取AE==AF
    ∴△AEF为等腰直角三角形,腰长为,BE=AB-AE=
    根据勾股定理可得EF==BE
    ∴△EBF为等腰三角形,腰长为;
    如下图所示:连接AC、BD交于点E

    易知△EAB、△EBC、△ECD和△EAD均为等腰三角形
    利用勾股定理AC=
    ∴AE=BE=CE=DE=.
    综上:其中一个等腰三角形的腰长可以是①,②1,③﹣1,④,不可以是.
    故答案为:①②③④.
    【点睛】
    此题考查的是矩形的性质、等腰三角形的判定及性质和锐角三角函数,掌握矩形的性质、等腰三角形的判定及性质和锐角三角函数是解决此题的关键.

    二、解答题
    15.(2020·辽宁鞍山?中考真题)在平面直角坐标系中,抛物线经过点和点,与y轴交于点D,与x轴的另一交点为点B.

    (1)求抛物线的解析式;
    (2)如图1,连接,在抛物线上是否存在点P,使得?若存在,请求出点P的坐标;若不存在,请说明理由;
    (3)如图2,连接,交y轴于点E,点M是线段上的动点(不与点A,点D重合),将沿所在直线翻折,得到,当与重叠部分的面积是面积的时,请直接写出线段的长.
    【答案】(1);(2)存在,(,)或(,);(3)或
    【解析】
    【分析】
    (1)根据点A和点C的坐标,利用待定系数法求解;
    (2)在x轴正半轴上取点E,使OB=OE,过点E作EF⊥BD,垂足为F,构造出∠PBC=∠BDE,分点P在第三象限时,点P在x轴上方时,点P在第四象限时,共三种情况分别求解;
    (3)设EF与AD交于点N,分点F在直线AC上方和点F在直线AC下方时两种情况,利用题中所给面积关系和中线的性质可得MN=AN,FN=NE,从而证明四边形FMEA为平行四边形,继而求解.
    【详解】
    解:(1)∵抛物线经过点A(-2,-4)和点C(2,0),
    则,解得:,
    ∴抛物线的解析式为;
    (2)存在,理由是:
    在x轴正半轴上取点E,使OB=OE,过点E作EF⊥BD,垂足为F,
    在中,
    令y=0,解得:x=2或-1,
    ∴点B坐标为(-1,0),
    ∴点E坐标为(1,0),
    可知:点B和点E关于y轴对称,
    ∴∠BDO=∠EDO,即∠BDE=2∠BDO,
    ∵D(0,2),
    ∴DE==BD,
    在△BDE中,有×BE×OD=×BD×EF,
    即2×2=×EF,解得:EF=,
    ∴DF==,
    ∴tan∠BDE===,
    若∠PBC=2∠BDO,
    则∠PBC=∠BDE,
    ∵BD=DE=,BE=2,
    则BD2+DE2>BE2,
    ∴∠BDE为锐角,
    当点P在第三象限时,
    ∠PBC为钝角,不符合;
    当点P在x轴上方时,
    ∵∠PBC=∠BDE,设点P坐标为(c,),
    过点P作x轴的垂线,垂足为G,
    则BG=c+1,PG=,
    ∴tan∠PBC===,
    解得:c=,
    ∴=,
    ∴点P的坐标为(,);

    当点P在第四象限时,
    同理可得:PG=,BG=c+1,
    tan∠PBC===,
    解得:c=,
    ∴=,
    ∴点P的坐标为(,),
    综上:点P的坐标为(,)或(,);

    (3)设EF与AD交于点N,
    ∵A(-2,-4),D(0,2),设直线AD表达式为y=mx+n,
    则,解得:,
    ∴直线AD表达式为y=3x+2,
    设点M的坐标为(s,3s+2),
    ∵A(-2,-4),C(2,0),设直线AC表达式为y=m1x+n1,
    则,解得:,
    ∴直线AC表达式为y=x-2,
    令x=0,则y=-2,
    ∴点E坐标为(0,-2),
    可得:点E是线段AC中点,
    ∴△AME和△CME的面积相等,
    由于折叠,
    ∴△CME≌△FME,即S△CME=S△FME,
    由题意可得:
    当点F在直线AC上方时,
    ∴S△MNE=S△AMC=S△AME=S△FME,
    即S△MNE= S△ANE= S△MNF,
    ∴MN=AN,FN=NE,
    ∴四边形FMEA为平行四边形,
    ∴CM=FM=AE=AC==,
    ∵M(s,3s+2),
    ∴,
    解得:s=或0(舍),
    ∴M(,),
    ∴AM==,

    当点F在直线AC下方时,如图,
    同理可得:四边形AFEM为平行四边形,
    ∴AM=EF,
    由于折叠可得:CE=EF,
    ∴AM=EF=CE=,

    综上:AM的长度为或.
    【点睛】
    本题是二次函数综合题,涉及到待定系数法,二次函数的图像和性质,折叠问题,平行四边形的判定和性质,中线的性质,题目的综合性很强.难度很大,对学生的解题能力要求较高.
    16.(2020·辽宁鞍山?中考真题)在矩形中,点E是射线上一动点,连接,过点B作于点G,交直线于点F.

    (1)当矩形是正方形时,以点F为直角顶点在正方形的外部作等腰直角三角形,连接.
    ①如图1,若点E在线段上,则线段与之间的数量关系是________,位置关系是_________;
    ②如图2,若点E在线段的延长线上,①中的结论还成立吗?如果成立,请给予证明;如果不成立,请说明理由;
    (2)如图3,若点E在线段上,以和为邻边作,M是中点,连接,,,求的最小值.
    【答案】(1)①相等;垂直;②成立,理由见解析;(2)
    【解析】
    【分析】
    (1)①证明△ABE≌△BCF,得到BE=CF,AE=BF,再证明四边形BEHF为平行四边形,从而可得结果;
    ②根据(1)中同样的证明方法求证即可;
    (2)说明C、E、G、F四点共圆,得出GM的最小值为圆M半径的最小值,设BE=x,证明△ABE∽△BCF,得到CF,再利用勾股定理表示出EF=,求出最值即可得到GM的最小值.
    【详解】
    解:(1)①∵四边形ABCD为正方形,
    ∴AB=BC,∠ABC=∠BCD=90°,即∠BAE+∠AEB=90°,
    ∵AE⊥BF,
    ∴∠CBF+∠AEB=90°,
    ∴∠CBF=∠BAE,又AB=BC,∠ABE=∠BCF=90°,
    ∴△ABE≌△BCF(AAS),
    ∴BE=CF,AE=BF,
    ∵△FCH为等腰直角三角形,
    ∴FC=FH=BE,FH⊥FC,而CD⊥BC,
    ∴FH∥BC,
    ∴四边形BEHF为平行四边形,
    ∴BF∥EH且BF=EH,
    ∴AE=EH,AE⊥EH,
    故答案为:相等;垂直;
    ②成立,理由是:
    当点E在线段BC的延长线上时,
    同理可得:△ABE≌△BCF(AAS),
    ∴BE=CF,AE=BF,
    ∵△FCH为等腰直角三角形,
    ∴FC=FH=BE,FH⊥FC,而CD⊥BC,
    ∴FH∥BC,
    ∴四边形BEHF为平行四边形,
    ∴BF∥EH且BF=EH,
    ∴AE=EH,AE⊥EH;
    (2)∵∠EGF=∠BCD=90°,
    ∴C、E、G、F四点共圆,
    ∵四边形BCHF是平行四边形,M为BH中点,
    ∴M也是EF中点,
    ∴M是四边形BCHF外接圆圆心,
    则GM的最小值为圆M半径的最小值,
    ∵AB=3,BC=2,
    设BE=x,则CE=2-x,
    同(1)可得:∠CBF=∠BAE,
    又∵∠ABE=∠BCF=90°,
    ∴△ABE∽△BCF,
    ∴,即,
    ∴CF=,
    ∴EF=
    =
    =,
    设y=,
    当x=时,y取最小值,
    ∴EF的最小值为,
    故GM的最小值为.

    【点睛】
    本题考查了全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的性质,二次函数的最值,圆的性质,难度较大,找出图形中的全等以及相似三角形是解题的关键.
    17.(2020·江苏泰州?中考真题)如图,正方形的边长为,为的中点,为等边三角形,过点作的垂线分别与边、相交于点、,点、分别在线段、上运动,且满足,连接.

    (1)求证:.
    (2)当点在线段上时,试判断的值是否变化?如果不变,求出这个值,如果变化,请说明理由.
    (3)设,点关于的对称点为,若点落在的内部,试写出的范围,并说明理由.
    【答案】(1)证明见详解;(2)不变,;(3)当时,点落在的内部.
    【解析】
    【分析】
    (1)由“”可证;
    (2)连接,过点作于,由“”可证,可得,,,由直角三角形的性质可求,由锐角三角函数可求,由全等三角形的性质可求,即可求;
    (3)当点落在上时,,当点落在上时,分别求出点落在上和上时的值,即可求解.
    【详解】
    解:∵为等边三角形,
    ∴,,
    ∴,

    即有:,
    ∵四边形是正方形,

    在和中


    (2)的值不变,
    理由如下:如图1,连接,过点作于,

    ,,

    ,,,
    ,,
    ,,
    ,,
    四边形是矩形,








    (3)当点落在上时,如图2示,




    是等边三角形,
    当点落在上时,点关于的对称点为,
    △,


    点与点重合,点与点重合,

    如图3,当点落在上时,

    同理可求:,
    综上所述,当时,点落在的内部.
    【点睛】
    本题是四边形综合题,考查了正方形的性质,矩形的判定和性质,全等三角形的判定和性质,等边三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.
    18.(2020·辽宁丹东?中考真题)已知:菱形和菱形,,起始位置点在边上,点在所在直线上,点在点的右侧,点在点的右侧,连接和,将菱形以为旋转中心逆时针旋转角().
    (1)如图1,若点与重合,且,求证:;

    (2)若点与不重合,是上一点,当时,连接和,和所在直线相交于点;
    ①如图2,当时,请猜想线段和线段的数量关系及的度数;

    ②如图3,当时,请求出线段和线段的数量关系及的度数;

    ③在②的条件下,若点与的中点重合,,,在整个旋转过程中,当点与点重合时,请直接写出线段的长.
    【答案】(1)见详解;(2)①A′C=BM,∠BPC=45°;②A′C=BM,∠BPC=30°;③1+.
    【解析】
    【分析】
    (1)证明△ADD′≌△BAB′(SAS)可得结论;
    (2)①证明△AA′C∽△MAB,可得结论;
    ②证明方法类似①,即证明△AA′C∽△MAB即可得出结论;
    ③求出A′C,利用②中结论计算即可.
    【详解】
    (1)证明:如图1,在菱形ABCD和菱形A′B′C′D′中,∵∠BAD=∠B′A′D′=90°,
    ∴四边形ABCD,四边形A′B′CD′都是正方形,
    ∵∠DAB=∠D′AB′=90°,
    ∴∠DAD′=∠BAB′,
    ∵AD=AB,AD′=AB′,
    ∴△ADD′≌△BAB′(SAS),
    ∴DD′=BB′;
    (2)①解:如图2中,结论:A′C=BM,∠BPC=45°;

    理由:设AC交BP于O,
    ∵四边形ABCD,四边形A′B′CD′都是正方形,
    ∴∠MA′A=∠DAC=45°,
    ∴∠A′AC=∠MAB,
    ∵MA′=MA,
    ∴∠MA′A=∠MAA′=45°,
    ∴∠AMA′=90°,
    ∴AA′=AM,
    ∵△ABC是等腰直角三角形,
    ∵AC=AB,
    ∴=,
    ∵∠A′AC=∠MAB,
    ∴△AA′C∽△MAB,
    ∴=,∠A′CA=∠ABM,
    ∴A′C=BM,
    ∵∠AOB=∠COP,
    ∴∠CPO=∠OAB=45°,即∠BPC=45°;
    ②解:如图3中,设AC交BP于O,

    在菱形ABCD和菱形A′B′C′D′中,∵∠BAD=∠B′A′D′=60°,
    ∴∠C′A′B′=∠CAB=30°,
    ∴∠A′AC=∠MAB,
    ∵MA′=MA,
    ∴∠MA′A=∠MAA′=30°,
    ∴AA′=AM,
    在△ABC中,∵BA=BC,∠CAB=30°,
    ∴AC=AB,
    ∴=,
    ∵∠A′AC=∠MAB,
    ∴△A′AC∽△MAB,
    ∴=,∠ACA′=∠ABM,
    ∴A′C=BM,
    ∵∠AOB=∠COP,
    ∴∠CPO=∠OAB=30°,即∠BPC=30°;
    ③如图4中,过点A作AH⊥A′C于H,

    由题意AB=BC=CD=AD=2,可得AC=AB=2,
    在Rt△A′AH中,A′H=AA′=1,A′H=AH=,
    在Rt△AHC中,CH===,
    ∴A′C=A′H+CH=+,
    由②可知,A′C=BM,
    ∴BM=1+.
    【点睛】
    本题属于四边形综合题,考查了菱形的性质,正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.
    19.(2020·江苏南通?中考真题)矩形ABCD中,AB=8,AD=12.将矩形折叠,使点A落在点P处,折痕为DE.
    (1)如图①,若点P恰好在边BC上,连接AP,求的值;
    (2)如图②,若E是AB的中点,EP的延长线交BC于点F,求BF的长.

    【答案】(1);(2)BF=3.
    【解析】
    【分析】
    (1)如图①中,取DE的中点M,连接PM.证明△POM∽△DCP,利用相似三角形的性质求解即可.
    (2)如图②中,过点P作GH∥BC交AB于G,交CD于H.设EG=x,则BG=4-x.证明△EGP∽△PHD,推出,推出PG=2EG=3x,DH=AG=4+x,在Rt△PHD中,由PH2+DH2=PD2,可得(3x)2+(4+x)2=122,求出x,再证明△EGP∽△EBF,利用相似三角形的性质求解即可.
    【详解】
    解:(1)如图①中,取DE的中点M,连接PM.

    ∵四边形ABCD是矩形,
    ∴∠BAD=∠C=90°,
    由翻折可知,AO=OP,AP⊥DE,∠2=∠3,∠DAE=∠DPE=90°,
    在Rt△EPD中,∵EM=MD,
    ∴PM=EM=DM,
    ∴∠3=∠MPD,
    ∴∠1=∠3+∠MPD=2∠3,
    ∵∠ADP=2∠3,
    ∴∠1=∠ADP,
    ∵AD∥BC,
    ∴∠ADP=∠DPC,
    ∴∠1=∠DPC,
    ∵∠MOP=∠C=90°,
    ∴△POM∽△DCP,
    ∴,
    ∴.
    (2)如图②中,过点P作GH∥BC交AB于G,交CD于H.则四边形AGHD是矩形,设EG=x,则BG=4﹣x

    ∵∠A=∠EPD=90°,∠EGP=∠DHP=90°,
    ∴∠EPG+∠DPH=90°,∠DPH+∠PDH=90°,
    ∴∠EPG=∠PDH,
    ∴△EGP∽△PHD,
    ∴,
    ∴PG=2EG=3x,DH=AG=4+x,
    在Rt△PHD中,∵PH2+DH2=PD2,
    ∴(3x)2+(4+x)2=122,
    解得:x=(负值已经舍弃),
    ∴BG=4﹣=,
    在Rt△EGP中,GP=,
    ∵GH∥BC,
    ∴△EGP∽△EBF,
    ∴,
    ∴,
    ∴BF=3.
    【点睛】
    本题考查翻折变换,相似三角形的判定和性质,矩形的性质等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数构建方程解决问题.
    20.(2020·辽宁营口?中考真题)如图,在矩形ABCD中,AD=kAB(k>0),点E是线段CB延长线上的一个动点,连接AE,过点A作AF⊥AE交射线DC于点F.

    (1)如图1,若k=1,则AF与AE之间的数量关系是  ;
    (2)如图2,若k≠1,试判断AF与AE之间的数量关系,写出结论并证明;(用含k的式子表示)
    (3)若AD=2AB=4,连接BD交AF于点G,连接EG,当CF=1时,求EG的长.
    【答案】(1)AF=AE;(2)AF=kAE,证明见解析;(3)EG的长为或
    【解析】
    【分析】
    (1)证明△EAB≌△FAD(AAS),由全等三角形的性质得出AF=AE;
    (2)证明△ABE∽△ADF,由相似三角形的性质得出,则可得出结论;
    (3)①如图1,当点F在DA上时,证得△GDF∽△GBA,得出,求出AG=.由△ABE∽△ADF可得出,求出AE=.则可得出答案;
    ②如图2,当点F在DC的延长线上时,同理可求出EG的长.
    【详解】
    解:(1)AE=AF.
    ∵AD=AB,四边形ABCD矩形,
    ∴四边形ABCD是正方形,
    ∴∠BAD=90°,
    ∵AF⊥AE,
    ∴∠EAF=90°,
    ∴∠EAB=∠FAD,
    ∴△EAB≌△FAD(AAS),
    ∴AF=AE;
    故答案为:AF=AE.
    (2)AF=kAE.
    证明:∵四边形ABCD是矩形,
    ∴∠BAD=∠ABC=∠ADF=90°,
    ∴∠FAD+∠FAB=90°,
    ∵AF⊥AE,
    ∴∠EAF=90°,
    ∴∠EAB+∠FAB=90°,
    ∴∠EAB=∠FAD,
    ∵∠ABE+∠ABC=180°,
    ∴∠ABE=180°﹣∠ABC=180°﹣90°=90°,
    ∴∠ABE=∠ADF.
    ∴△ABE∽△ADF,
    ∴,
    ∵AD=kAB,
    ∴,
    ∴,
    ∴AF=kAE.
    (3)解:①如图1,当点F在DA上时,

    ∵四边形ABCD是矩形,
    ∴AB=CD,AB∥CD,
    ∵AD=2AB=4,
    ∴AB=2,
    ∴CD=2,
    ∵CF=1,
    ∴DF=CD﹣CF=2﹣1=1.
    在Rt△ADF中,∠ADF=90°,
    ∴AF=,
    ∵DF∥AB,
    ∴∠GDF=∠GBA,∠GFD=∠GAB,
    ∴△GDF∽△GBA,

    ∵AF=GF+AG,
    ∴AG=
    ∵△ABE∽△ADF,
    ∴,
    ∴AE==
    在Rt△EAG中,∠EAG=90°,
    ∴EG=,
    ②如图2,当点F在DC的延长线上时,DF=CD+CF=2+1=3,

    在Rt△ADF中,∠ADF=90°,
    ∴AF=.
    ∵DF∥AB,
    ∵∠GAB=∠GFD,∠GBA=∠GDF,
    ∴△AGB∽△FGD,
    ∴,
    ∵GF+AG=AF=5,
    ∴AG=2,
    ∵△ABE∽△ADF,
    ∴,
    ∴,
    在Rt△EAG中,∠EAG=90°,
    ∴EG=.
    综上所述,EG的长为或.
    【点睛】
    本题是相似形综合题,考查了全等三角形的判定与性质,正方形的性质,矩形的性质,相似三角形的判定与性质,勾股定理等知识,熟练掌握相似三角形的判定与性质是解题的关键.
    21.(2020·吉林中考真题)如图,在平面直角坐标系中,抛物线与轴正半轴交于点,且点的坐标为,过点作垂直于轴的直线.是该抛物线上的任意一点,其横坐标为,过点作于点;是直线上的一点,其纵坐标为,以,为边作矩形.

    (1)求的值.
    (2)当点与点重合时,求的值.
    (3)当矩形是正方形,且抛物线的顶点在该正方形内部时,求的值.
    (4)当抛物线在矩形内的部分所对应的函数值随的增大而减小时,直接写出的取值范围.
    【答案】(1);(2);(3);(4)或.
    【解析】
    【分析】
    (1)将A点坐标代入函数解析式即可求得b的值;
    (2)分别表示出P、Q、M的坐标,根据Q、M的横坐标相同,它们重合时纵坐标也相同,列出方程求解即可;
    (3)分别表示出PQ和MQ的长度,根据矩形是正方形时,即可求得m的值,再根据顶点在正方形内部,排除不符合条件的m的值;
    (4)分,,,四种情况讨论,结合图形分析即可.
    【详解】
    解:(1)将点代入
    得,
    解得b=1,;
    (2)由(1)可得函数的解析式为,
    ∴,
    ∵于点,
    ∴,
    ∵是直线上的一点,其纵坐标为,
    ∴,
    若点与点重合,则

    解得;
    (3)由(2)可得,,
    当矩形是正方形时,
    即,
    即或,
    解得,
    解得,
    又,
    ∴抛物线的顶点为(1,2),
    ∵抛物线的顶点在该正方形内部,
    ∴P点在抛物线对称轴左侧,即,且M点的纵坐标大于抛物线顶点的纵坐标,即,
    解得,故m的值为;
    (4)①如下图

    当时,若抛物线在矩形内的部分所对应的函数值随的增大而减小,
    则M点的纵坐标应该小于P点纵坐标,且P点应该在x轴上侧,
    即且,
    解得,
    解得,
    ∴,
    ②如下图

    当时,若抛物线在矩形内的部分所对应的函数值随的增大而减小,
    则M点的纵坐标应该小于P点纵坐标,
    即,解得,
    ∴;
    ③当时,P点和M点都在直线x=3上不构成矩形,不符合题意;
    ④如下图

    当时,若抛物线在矩形内的部分所对应的函数值随的增大而减小,
    则M点的纵坐标应该大于P点纵坐标,
    即,解得或,
    故,
    综上所述或.
    【点睛】
    本题考查二次函数综合,正方形的性质定理,求二次函数解析式.能分别表示出M、P、Q的坐标并结合图形分析是解决此题的关键,注意分类讨论.
    22.(2020·湖南永州?中考真题)某校开展了一次综合实践活动,参加该活动的每个学生持有两张宽为,长足够的矩形纸条.探究两张纸条叠放在一起,重叠部分的形状和面积.如图1所示,一张纸条水平放置不动,另一张纸条与它成45°的角,将该纸条从右往左平移.

    (1)写出在平移过程中,重叠部分可能出现的形状.
    (2)当重叠部分的形状为如图2所示的四边形时,求证:四边形是菱形.
    (3)设平移的距离为,两张纸条重叠部分的面积为.求s与x的函数关系式,并求s的最大值.
    【答案】(1)三角形,四边形(梯形、菱形),五边形;(2)见解析;(3),s的最大值为.
    【解析】
    【分析】
    (1)根据平移过程中,重叠部分四边形的形状判定即可;
    (2)分别过点B、D作于点E、于点F,再根据纸条的特点证明四边形ABCD是平行四边形,再证明邻边相等即可证明;
    (3)分、、和x=四种情况分别求出s与x的函数关系式,然后再求最大值即可.
    【详解】
    解:(1)在平移过程中,重叠部分的形状分别为:三角形,四边形(梯形、菱形),五边形;
    (2)证明:分别过点B、D作于点E、于点F,

    ∵两张纸条等宽,
    ∴.
    在和中,
    ∴,
    ∵两张纸条都是矩形,,
    ∴ .
    ∴四边形是平行四边形,
    又∵,
    ∴四边形是菱形;

    (3)Ⅰ、如图:当时,重叠部分为三角形,如图所示,
    ∴,
    ∴.最大值为.

    Ⅱ、如图:当时,重叠部分为梯形,如图所示,梯形的下底为,上底为,
    ∴,当时,s取最大值.

    Ⅲ、当时,重叠部分为五边形,

    此时.

    Ⅳ、当时,重叠部分为菱形,
    ∴.


    ∴s的最大值为.
    【点睛】
    本题考查了平移变换、等腰直角三角形的性质、菱形的判定以及运用二次函数求最值,考查知识点较多,因此灵活运用所学知识成为解答本题的关键.
    23.(2020·青海中考真题)如图1(注:与图2完全相同)所示,抛物线经过B、D两点,与x轴的另一个交点为A,与y轴相交于点C.
    (1)求抛物线的解析式.
    (2)设抛物线的顶点为M,求四边形ABMC的面积(请在图1中探索)
    (3)设点Q在y轴上,点P在抛物线上.要使以点A、B、P、Q为顶点的四边形是平行四边形,求所有满足条件的点P的坐标(请在图2中探索)

    【答案】(1);(2);(3)点P的坐标为:或(4,)或(,).
    【解析】
    【分析】
    (1)由图可知点B、点D的坐标,利用待定系数法,即可求出抛物线的解析式;
    (2)过点M作ME⊥AB于点E,由二次函数的性质,分别求出点A、C、M的坐标,然后得到OE、BE的长度,再利用切割法求出四边形的面积即可;
    (3)由点Q在y轴上,设Q(0,y),由平行四边形的性质,根据题意可分为:①当AB为对角线时;②当BQ2为对角线时;③当AQ3为对角线时;分别求出三种情况的点P的坐标,即可得到答案.
    【详解】
    解:(1)根据题意,抛物线经过B、D两点,
    点D为(,),点B为(3,0),

    则,
    解得:,
    ∴抛物线的解析式为;
    (2)∵,
    ∴点M的坐标为(1,2)
    令,
    解得:,,
    ∴点A为(,0);
    令,则,
    ∴点C为(0,);
    ∴OA=1,OC=,
    过点M作ME⊥AB于点E,如图:

    ∴,,,
    ∴,
    ∴;
    (3)根据题意,点Q在y轴上,则设点Q为(0,y),
    ∵点P在抛物线上,且以点A、B、P、Q为顶点的四边形是平行四边形,
    如图所示,可分为三种情况进行分析:

    ①AB为对角线时,则为对角线;
    由平行四边形的性质,
    ∴点E为AB和的中点,
    ∵E为(1,0),
    ∵点Q1为(0,y),
    ∴点P1的横坐标为2;
    当时,代入,
    ∴,
    ∴点;
    ②当BQ2是对角线时,AP也是对角线,
    ∵点B(3,0),点Q2(0,y),
    ∴BQ2中点的横坐标为,
    ∵点A为(,0),
    ∴点P2的横坐标为4,
    当时,代入,
    ∴,
    ∴点P2的坐标为(4,);
    ③当AQ3为对角线时,BP3也是对角线;
    ∵点A为(,0),点Q3(0,y),
    ∴AQ3的中点的横坐标为,
    ∵点B(3,0),
    ∴点P3的横坐标为,
    当时,代入,
    ∴,
    ∴点P3的坐标为(,);
    综合上述,点P的坐标为:或(4,)或(,).
    【点睛】
    本题考查了二次函数的性质,平行四边形的性质,解一元二次方程,以及坐标与图形等知识,解题的关键是熟练掌握二次函数的性质进行解题,注意利用分类讨论和数形结合的思想进行分析.
    24.(2020·江苏盐城?中考真题)以下虚线框中为一个合作学习小组在一次数学实验中的过程记录,请阅读后完成虚线框下方的问题.
    (1)在中,,在探究三边关系时,通过画图,度量和计算,收集到,组数据如下表:(单位:厘米)



























    (2)根据学习函数的经验,选取上表中和的数据进行分析;
    设,以为坐标,在图所示的坐标系中描出对应的点;
    连线;

    观察思考
    (3)结合表中的数据以及所面的图像,猜想.当 时,最大;
    (4)进一步C猜想:若中,,斜边为常数,),则 时,最大.
    推理证明
    (5)对(4)中的猜想进行证明.
    问题1.在图中完善的描点过程,并依次连线;
    问题2.补全观察思考中的两个猜想: _______ _______
    问题3.证明上述中的猜想:
    问题4.图中折线是一个感光元件的截面设计草图,其中点间的距离是厘米,厘米,平行光线从区域射入,线段为感光区城,当的长度为多少时,感光区域长度之和最大,并求出最大值.

    【答案】问题1:见解析;问题2:2,;问题3:见解析;问题4:当时,感光区域长度之和最大为
    【解析】
    【分析】
    问题1:根据(1)中的表格数据,描点连线,作出图形即可;
    问题2:根据(1)中的表格数据,可以得知当2时,最大;设,则,可得,有,可得出;
    问题3:可用两种方法证明,方法一:(判别式法)设,则,可得,有,可得出;方法二:(基本不等式),设,得,可得,根据当时,等式成立有,可得出

    问题4:方法一:延长交于点,过点作于点,垂足为,过点作交于点,垂足为,交于点,由题可知:在中,,得,根据,有,得,易证四边形为矩形,四边形为矩形,根据可得,由问题3可知,当时,最大,则有时,最大为;方法二:
    延长相交于点同法一求得:,根据四边形为矩形,有,,得到,由问题3可知,当时,最大
    则可得时最大为.
    【详解】
    问题1:图

    问题2:;
    问题3:
    法一:(判别式法)
    证明:设
    在中,




    关于的元二次方程有实根,




    当取最大值时,



    当时,有最大值.
    法二:(基本不等式)

    在中,



    当时,等式成立






    当时,有最大值.
    问题4:
    法一:延长交于点
    过点作于点垂足为
    过点作交于点垂足为
    交于点

    由题可知:在中,









    在中,




    四边形为矩形


    四边形为矩形,





    在中,.
    由问题3可知,当时,最大
    时,最大为
    即当时,感光区域长度之和最大为
    法二:
    延长相交于点

    同法一求得:


    四边形为矩形,





    由问题3可知,当时,最大
    时最大为
    即当时,感光区域长度之和最大为.
    【点睛】
    本题考查了一元二次方程,二次函数,不等式,解直角三角形,三角函数,矩形的性质等知识点,熟悉相关性质是解题的关键.
    25.(2020·湖南长沙?中考真题)在矩形ABCD中,E为上的一点,把沿AE翻折,使点D恰好落在BC边上的点F.
    (1)求证:
    (2)若,求EC的长;
    (3)若,记,求的值.

    【答案】(1)证明过程见解析;(2);(3).
    【解析】
    【分析】
    (1)只要证明∠B=∠C=90°,∠BAF=∠EFC即可;
    (2)因为△AFE是△ADE翻折得到的,得到AF=AD=4,根据勾股定理可得BF的长,从而得到CF的长,根据△ABF∽△FCE,得到,从而求出EC的长;
    (3)根据△ABF∽△FCE,得到∠CEF=∠BAF=,所以tan+tan=,设CE=1,DE=x,可得到AE,AB,AD的长,根据△ABF∽△FCE,得到,将求出的值代入化简会得到关于x的一元二次方程,解之即可求出x的值,然后可求出CE,CF,EF,AF的值,代入tan+tan=即可.
    【详解】
    (1)证明:∵四边形ABCD是矩形,
    ∴∠B=∠C=∠D=90°,
    ∴∠AFB+∠BAF=90°,
    ∵△AFE是△ADE翻折得到的,
    ∴∠AFE=∠D=90°,
    ∴∠AFB+∠CFE=90°,
    ∴∠BAF=∠CFE,
    ∴△ABF∽△FCE.
    (2)解:∵△AFE是△ADE翻折得到的,
    ∴AF=AD=4,
    ∴BF=,
    ∴CF=BC-BF=AD-BF=2,
    由(1)得△ABF∽△FCE,
    ∴,
    ∴,
    ∴EC=.
    (3)

    解:由(1)得△ABF∽△FCE,
    ∴∠CEF=∠BAF=,
    ∴tan+tan=,
    设CE=1,DE=x,
    ∵,
    ∴AE=DE+2EC=x+2,AB=CD=x+1,AD=
    ∵△ABF∽△FCE,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴x2-4x+4=0,
    解得x=2,
    ∴CE=1,CF=,EF=x=2,AF= AD==,
    ∴tan+tan==.
    【点睛】
    本题考查了相似三角形的判定与性质,翻折变换,矩形的性质,勾股定理等知识.解题的关键是灵活运用所学知识解决问题,学会运用方程的思想思考问题.
    26.(2020·辽宁抚顺?中考真题)如图,抛物线()过点和,点是抛物线的顶点,点是轴下方抛物线上的一点,连接,.
    (1)求抛物线的解析式;
    (2)如图①,当时,求点的坐标;

    (3)如图②,在(2)的条件下,抛物线的对称轴交轴于点,交线段于点,点是线段上的动点(点不与点和点重合,连接,将沿折叠,点的对应点为点,与的重叠部分为,在坐标平面内是否存在一点,使以点,,,为顶点的四边形是矩形?若存在,请直接写出点的坐标,若不存在,请说明理由.

    【答案】(1);(2);(3)存在,(,)或(,)或(,)
    【解析】
    【分析】
    (1)把点O(0,0)和A(6,0)分别代入解析式即可求解;
    (2)分别求得点B、C、E的坐标,用待定系数法求得直线的解析式,解方程组即可求得点D的坐标;
    (3)分三种情况讨论,利用解直角三角形求解即可.
    【详解】
    (1)把点和分别代入中,得:

    解得,
    ∴抛物线的解析式为;
    (2)如图,设抛物线的对称轴与轴相交于点C,与相交于点E,

    ∵,
    ∴顶点,对称轴与轴的交点C(3,0),
    ∴OC=3, CB=,
    ∵在中,,
    ∴,
    ∵,
    ∴,
    ∴在中,,
    ∴点E的坐标为(3,),
    设直线的解析式是(),
    把点E (3,)代入,得:
    解得,
    ∴直线的解析式是,
    ∴,
    解得(舍去),,
    ∴当时,,
    ∴点D的坐标为(5,);
    (3)存在,理由如下:
    由(2)得:∠COE=∠EOB=30,CE=,BE=OE=2CE=2,
    ①当∠EFG=90时,如图:

    点、G与点O重合,此时四边形EFGH为矩形,
    过H作HP⊥OC于P,
    ∵∠COE=∠EOB=30,
    ∴OH=EF=CE=,
    ∴∠HOP=90-∠COE-∠EOB=30,
    ∴HP=OH=,OP=HP=,
    点H的坐标为(,);
    ②当∠EGF=90时,此时四边形EGFH为矩形,如图:

    ∵∠CEO=90-∠COE=60,∠OEG=90-∠EOB=60,
    ∠BEG=180-∠CEO-∠OEG=60,
    根据折叠的性质:∠EF=∠BEF==30,
    在Rt△EGF中,∠EGF=90,∠GEF=30,GE=CE=,
    ∴GF=GE=1,
    ∴EH=GF=1,
    过H作HQ⊥BC于Q,
    ∴∠HEQ=90-∠BEG =30,
    ∴HQ=EH=,EQ=HQ=,
    点H的坐标为(,),即(,);
    ③当点G在OD上,且∠EGF=90时,此时四边形EGFH为矩形,如图:

    ∵∠BOE=30,
    ∴∠OFG=90-∠EOB=60,
    根据折叠的性质:∠E=∠BFE== =60,
    ∴FG是线段OE的垂直平分线,
    ∴OG=GE=OE=,EH=GF=OG=1,
    过H作HK⊥BC于K,
    ∴∠HEK=180-∠OEC-∠OEH=30,
    ∴HK=EH=,EK=HK=,
    点H的坐标为(,),即(,);
    综上,符合条件的点H的坐标为(,)或(,)或(,) .
    【点睛】
    本题是二次函数与几何的综合题考查了待定系数法求函数解析式,解直角三角形,含30度角的直角三角形的性质,翻折变换,矩形的性质等知识,解题的关键是注意数形结合思想和分类讨论的思想解决问题,属于中考压轴题.
    27.(2020·陕西中考真题)如图,在四边形ABCD中,AD∥BC,∠B=∠C.E是边BC上一点,且DE=DC.求证:AD=BE.

    【答案】详见解析.
    【解析】
    【分析】
    利用已知先证明AB∥DE,进而根据平行四边形的定义:两组对边平行的四边形是平行四边形,即可得出结论.
    【详解】
    证明:∵DE=DC,
    ∴∠DEC=∠C.
    ∵∠B=∠C,
    ∴∠B=∠DEC,
    ∴AB∥DE,
    ∵AD∥BC,
    ∴四边形ABED是平行四边形.
    ∴AD=BE.

    【点睛】
    本题主要考查了平行四边形的判定和性质.解题的关键是熟练掌握平行四边形的判定定理和性质定理的运用.
    28.(2020·江苏淮安?中考真题)如图,在平行四边形中,点、分别在、上,与相交于点,且.

    (1)求证:≌;
    (2)连接、,则四边形 (填“是”或“不是”)平行四边形.
    【答案】(1)证明过程见解析;(2)是,理由见解析;
    【解析】
    【分析】
    (1)根据平行四边形的对边平行可得到内错角相等,再根据已知条件可利用ASA得到全等;
    (2)由(1)可得到AF=EC,根据一组对边平行且相等的四边形式平行四边形即可得到答案;
    【详解】
    (1)∵四边形平行四边形,
    ∴AD∥BC,
    ∴,
    根据题可知,,
    在△AOF和△COE中,

    ∴≌.
    (2)如图所示,

    由(1)得≌,可得:

    又∵,
    ∴四边形AECF是平行四边形.
    【点睛】
    本题中主要考查了平行四边形的判定和性质,准确运用全等三角形的条件进行判断是解题的关键.
    29.(2020·湖北省直辖县级单位?中考真题)在平行四边形中,E为的中点,请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.

    (1)如图1,在上找出一点M,使点M是的中点;
    (2)如图2,在上找出一点N,使点N是的一个三等分点.
    【答案】(1)见解析;(2)见解析
    【解析】
    【分析】
    (1)连接对角线AC,BD,再连接E与对角线的交点,与BC的交点即为M点;
    (2)连接CE交BD即为N点,根据相似三角形的性质可得,于是DN=BD.
    【详解】
    解:(1)如图1,点M即为所求;
    (2)如图2,点N即为所求.

    【点睛】
    此题主要考查平行四边形与相似三角形的性质,解题的关键是熟知平行四边形的特点.
    30.(2020·江苏盐城?中考真题)如图,点是正方形,的中心.

    (1)用直尺和圆规在正方形内部作一点(异于点),使得(保留作图痕迹,不写作法)
    (2)连接求证:.
    【答案】(1)见解析;(2)见解析
    【解析】
    【分析】
    (1)作BC的垂直平分线即可求解;
    (2)根据题意证明即可求解.
    【详解】
    如图所示,点即为所求.

    连接
    由得:
    是正方形中心,

    在和中,



    【点睛】
    此题主要考查正方形的性质与证明,解题的关键是熟知正方形的性质、垂直平分线的作图及全等三角形的判定与性质.
    31.(2020·山西中考真题)如图,四边形是平行四边形,以点为圆心,为半径的与相切于点,与相交于点,的延长线交于点,连接交于点,求和的度数.

    【答案】45°,22.5°
    【解析】
    【分析】
    连接OB,即可得,再由平行四边形得出∠BOC=90°,从而推出∠C=45°,再由平行四边形的性质得出∠A=45°,算出∠AOB=45°,再根据圆周角定理即可得出∠E=22.5°.
    【详解】

    解:连接.
    与相切于点,
    ..
    四边形是平行四边形,




    四边形是平行四边形,



    【点睛】
    本题考查圆周角定理、平行四边形的性质,关键在于根据条件结合性质得出角度的变换.
    32.(2020·湖南娄底?中考真题)如图,中,,,分别在边、上的点E与点F关于对称,连接、、、.

    (1)试判定四边形的形状,并说明理由;
    (2)求证:
    【答案】(1)四边形为菱形,理由详见解析;(2)详见解析
    【解析】
    【分析】
    (1)根据题意可证明,再由可得到四边形是菱形;
    (2)根据直角三角形斜边上的中线的性质即可求解.
    【详解】
    解:(1)四边形为菱形,理由如下
    由可得,从而
    设与相交于点O
    ∵点E与点F关于对称
    ∴且
    在和中


    ∴,又
    ∴四边形为菱形,

    (2)∵,据(1)C

    又∵∴

    ∴.
    【点睛】
    此题主要考查菱形的判定与性质,解题的关键是熟知全等三角形的判定与性质、菱形的判定定理及直角三角形的性质.
    33.(2020·甘肃金昌?中考真题)如图,在中,是边上一点,且.
    (1)尺规作图(保留作图痕迹,不写作法)
    ①作的角平分线交于点;
    ②作线段的垂直平分线交于点.
    (2)连接,直接写出线段和的数量关系及位置关系.

    【答案】(1)①作图见解析,②作图见解析;(2)
    【解析】
    【分析】
    (1)①根据角平分线的作图方法直接作图即可;②根据垂直平分线的作图方法直接作图即可;
    (2)根据等腰三角形的性质与垂直平分线的定义证明是的中位线,根据中位线的性质可得答案.
    【详解】
    解:(1)如图,①即为所求作的的角平分线,
    ②过的垂线是所求作的线段的垂直平分线.

    (2)如图,连接,
    平分

    由作图可知:
    是的中位线,


    【点睛】
    本题考查的是角平分线与垂直平分线的尺规作图,同时考查了三角形的中位线的性质,掌握以上知识是解题的关键.
    34.(2020·山东淄博?中考真题)已知:如图,E是▱ABCD的边BC延长线上的一点,且CE=BC.
    求证:△ABC≌△DCE.

    【答案】见解析
    【解析】
    【分析】
    【详解】
    证明:∵四边形ABCD是平行四边形,
    ∴AB∥CD,AB=CD,
    ∴∠B=∠DCE,
    在△ABC和△DCE中,

    ∴△ABC≌△DCE(SAS).
    由平行四边形的性质得出AB∥CD,AB=CD,由平行线的性质得出∠B=∠DCE,由SAS即可得出结论.本题考查了平行四边形的性质、全等三角形的判定与性质等知识;
    【点评】熟练掌握平行四边形的性质和全等三角形的判定方法是解题的关键.
    35.(2020·上海中考真题)已知:如图,在菱形ABCD中,点E、F分别在边AB、AD上,BE=DF,CE的延长线交DA的延长线于点G,CF的延长线交BA的延长线于点H.
    (1)求证:△BEC∽△BCH;
    (2)如果BE2=AB•AE,求证:AG=DF.

    【答案】(1)证明见解析;(2)证明见解析.
    【解析】
    【分析】
    (1)先证明△CDF≌△CBE,进而得到∠DCF=∠BCE,再由菱形对边CDBH,得到∠H=∠DCF,进而∠BCE=∠H即可求解.
    (2) 由BE2=AB•AE,得到=,再利用AGBC,平行线分线段成比例定理得到=,再结合已知条件即可求解.
    【详解】
    解:(1)∵四边形ABCD是菱形,
    ∴CD=CB,∠D=∠B,CDAB.
    ∵DF=BE,
    ∴△CDF≌△CBE(SAS),
    ∴∠DCF=∠BCE.
    ∵CDBH,
    ∴∠H=∠DCF,
    ∴∠BCE=∠H.且∠B=∠B,
    ∴△BEC∽△BCH.
    (2)∵BE2=AB•AE,
    ∴=,
    ∵AGBC,
    ∴=,
    ∴=,
    ∵DF=BE,BC=AB,
    ∴BE=AG=DF,
    即AG=DF.
    【点睛】
    本题考查相似三角形的判定和性质,全等三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    36.(2020·湖南邵阳?中考真题)已知:如图①,将一块45°角的直角三角板与正方形的一角重合,连接,点M是的中点,连接.

    (1)请你猜想与的数量关系是__________.
    (2)如图②,把正方形绕着点D顺时针旋转角().
    ①与的数量关系是否仍成立,若成立,请证明;若不成立,请说明理由;(温馨提示:延长到点N,使,连接)
    ②求证:;
    ③若旋转角,且,求的值.(可不写过程,直接写出结果)
    【答案】(1)AF=2DM(2)①成立,理由见解析②见解析③
    【解析】
    【分析】
    (1)根据题意合理猜想即可;
    (2)①延长到点N,使,连接,先证明△MNC≌△MDE,再证明△ADF≌△DCN,得到AF=DN,故可得到AF=2DM;
    ②根据全等三角形的性质和直角的换算即可求解;
    ③依题意可得∠AFD=∠EDM=30°,可设AG=k,得到DG,AD,FG,ED的长,故可求解.
    【详解】
    (1)猜想与的数量关系是AF=2DM,
    故答案为:AF=2DM;
    (2)①AF=2DM仍然成立,
    理由如下:延长到点N,使,连接,
    ∵M是CE中点,
    ∴CM=EM
    又∠CMN=∠EMD,
    ∴△MNC≌△MDE
    ∴CN=DE=DF,∠MNC=∠MDE
    ∴CN∥DE,
    又AD∥BC
    ∴∠NCB=∠EDA
    ∴△ADF≌△DCN
    ∴AF=DN
    ∴AF=2DM
    ②∵△ADF≌△DCN
    ∴∠NDC=∠FAD,
    ∵∠CDA=90°,
    ∴∠NDC+∠NDA=90°
    ∴∠FAD+∠NDA=90°
    ∴AF⊥DM

    ③∵,
    ∴∠EDC=90°-45°=45°
    ∵,
    ∴∠EDM=∠EDC=30°,
    ∴∠AFD=30°
    过A点作AG⊥FD的延长线于G点,∴∠ADG=90°-45°=45°
    ∴△ADG是等腰直角三角形,
    设AG=k,则DG=k,AD=AG÷sin45°=k,
    FG=AG÷tan30°=k,
    ∴FD=ED=k-k
    故=.

    【点睛】
    此题主要考查四边形综合,解题的关键是熟知正方形的性质、旋转的特点、全等三角形的判定与性质及三角函数的运用.
    37.(2020·湖北恩施?中考真题)如图,,平分∠ABC交于点,点C在上且,连接.求证:四边形是菱形.

    【答案】见解析
    【解析】
    【分析】
    由,BD平分∠ABC得到∠ABD=∠ADB,进而得到△ABD为等腰三角形,进而得到AB=AD,再由BC=AB,得到对边AD=BC,进而得到四边形ABCD为平行四边形,再由邻边相等即可证明ABCD为菱形.
    【详解】
    证明:∵,
    ∴∠ADB=∠DBC,
    又BD平分∠ABC,
    ∴∠DBC=∠ABD,
    ∴∠ADB=∠ABD,
    ∴△ABD为等腰三角形,
    ∴AB=AD,
    又已知AB=BC,
    ∴AD=BC,
    又,即ADBC,
    ∴四边形ABCD为平行四边形,
    又AB=AD,
    ∴四边形ABCD为菱形.
    【点睛】
    本题考了角平分线性质,平行线的性质,菱形的判定方法,平行四边形的判定方法等,熟练掌握其判定方法及性质是解决此类题的关键.
    38.(2020·江苏徐州?中考真题)小红和爸爸绕着小区广场锻炼如图在矩形广场边的中点处有一座雕塑.在某一时刻,小红到达点处,爸爸到达点处,此时雕塑在小红的南偏东方向,爸爸在小红的北偏东方向,若小红到雕塑的距离,求小红与爸爸的距离.(结果精确到,参考数据:,,)

    【答案】.
    【解析】
    【分析】
    过点P作PE⊥BC,则四边形ABEP是矩形,由解直角三角形求出,则,然后求出PQ即可.
    【详解】
    解:过点P作PE⊥BC,如图:

    根据题意,则四边形ABEP是矩形,
    ∴,
    在Rt△APM中,PM=30,∠APM=45°,
    ∴,
    ∵点M是AB的中点,
    ∴,
    ∴,
    在Rt△PEQ中,∠PQE=60°,,
    ∴;
    ∴小红与爸爸的距离.
    【点睛】
    本题考查了解直角三角形的应用,矩形的性质,方位角问题,等腰直角三角形的性质,解题的关键是利用解直角三角形正确求出各边的长度.
    39.(2020·陕西中考真题)如图,△ABC是⊙O的内接三角形,∠BAC=75°,∠ABC=45°.连接AO并延长,交⊙O于点D,连接BD.过点C作⊙O的切线,与BA的延长线相交于点E.
    (1)求证:AD∥EC;
    (2)若AB=12,求线段EC的长.

    【答案】(1)详见解析;(2)12+4.
    【解析】
    【分析】
    (1)连接OC,由切线的性质可得∠OCE=90°,由圆周角定理可得∠AOC=90°,可得结论;
    (2)过点A作AF⊥EC交EC于F,由锐角三角函数可求AD=8,可证四边形OAFC是正方形,可得CF=AF=4,由锐角三角函数可求EF=12,即可求解.
    【详解】
    证明:(1)连接OC,

    ∵CE与⊙O相切于点C,
    ∴∠OCE=90°,
    ∵∠ABC=45°,
    ∴∠AOC=90°,
    ∵∠AOC+∠OCE=180°,
    ∴∴AD∥EC;
    (2)如图,过点A作AF⊥EC交EC于F,

    ∵∠BAC=75°,∠ABC=45°,
    ∴∠ACB=60°,
    ∴∠D=∠ACB=60°,
    ∴sin∠ADB=,
    ∴AD==8,
    ∴OA=OC=4,
    ∵AF⊥EC,∠OCE=90°,∠AOC=90°,
    ∴四边形OAFC是矩形,
    又∵OA=OC,
    ∴四边形OAFC是正方形,
    ∴CF=AF=4,
    ∵∠BAD=90°﹣∠D=30°,
    ∴∠EAF=180°﹣90°﹣30°=60°,
    ∵tan∠EAF=,
    ∴EF=AF=12,
    ∴CE=CF+EF=12+4.
    【点睛】
    本题考查了切线的性质,圆周角定理,正方形的判定和性质,锐角三角函数,灵活运用知识点是解题关键.
    40.(2020·陕西中考真题)如图所示,小明家与小华家住在同一栋楼的同一单元,他俩想测算所住楼对面商业大厦的高MN.他俩在小明家的窗台B处,测得商业大厦顶部N的仰角∠1的度数,由于楼下植物的遮挡,不能在B处测得商业大厦底部M的俯角的度数.于是,他俩上楼来到小华家,在窗台C处测得大厦底部M的俯角∠2的度数,竟然发现∠1与∠2恰好相等.已知A,B,C三点共线,CA⊥AM,NM⊥AM,AB=31m,BC=18m,试求商业大厦的高MN.

    【答案】80m.
    【解析】
    【分析】
    过点C作CE⊥MN于点E,过点B作BF⊥MN于点F,可得四边形AMEC和四边形AMFB均为矩形,可以证明△BFN≌△CEM,得NF=EM=49,进而可得商业大厦的高MN.
    【详解】
    解:如图,过点C作CE⊥MN于点E,过点B作BF⊥MN于点F,

    ∴∠CEF=∠BFE=90°,
    ∵CA⊥AM,NM⊥AM,
    ∴四边形AMEC和四边形AMFB均为矩形,
    ∴CE=BF,ME=AC,∠1=∠2,
    ∴△BFN≌△CEM(ASA),
    ∴NF=EM=31+18=49,
    由矩形性质可知:EF=CB=18,
    ∴MN=NF+EM﹣EF=49+49﹣18=80(m).
    答:商业大厦的高MN为80m.
    【点睛】
    本题主要考查了全等三角形的性质和判定,解决本题的关键是构造直角三角形和矩形,得出NF=EM=AC.
    41.(2020·湖北黄石?中考真题)如图,反比例函数的图象与正比例函数的图象相交于、B两点,点C在第四象限,BC∥x轴.

    (1)求k的值;
    (2)以、为边作菱形,求D点坐标.
    【答案】(1)k=2;(2)D点坐标为(1+,2).
    【解析】
    【分析】

    (1)根据题意,点在正比例函数上,故将点代入正比例函数中,可求出a值,点A又在反比例函数图像上,故k值可求;
    (2)根据(1)中已知A点坐标,则B点坐标可求,根据两点间距离公式可以求出AB的长,最后利用已知条件四边形ABCD为菱形,BC∥x,即可求出D点坐标.
    【详解】

    (1)根据题意,点在正比例函数上,故将点代入正比例函数中,得a=2,故点A的坐标为(1,2),点A又在反比例函数图像上,设反比例函数解析式为,将A(1,2)代入反比例函数解析中,得k=2.
    故k=2.
    (2)如图,A、B为反比例函数与正比例函数的交点,故可得,解得,,如图,已知点A坐标为(1,2),故点B坐标为(-1,-2),根据两点间距离公式可得AB=,根据已知条件中四边形ABCD为菱形,故AB=AD=,AD∥BC∥x轴,则点D坐标为(1+,2).
    故点D坐标为(1+,2).
    【点睛】

    (1)本题主要考查正比例函数和反比例函数解析式,掌握求解正比例函数和反比例函数解析式的方法以及已知解析式求点坐标是解答本题的关键.
    (2)本题主要考查求正比例函数和反比例函数交点坐标、菱形性质、两点间距离公式,掌握求正比例函数和反比例函数交点坐标、菱形性质、两点间距离公式是解答本题的关键.
    42.(2020·广东广州?中考真题)如图,平面直角坐标系中,的边在轴上,对角线,交于点,函数的图象经过点和点.

    (1)求的值和点的坐标;
    (2)求的周长.
    【答案】(1)k=12,M(6,2);(2)28
    【解析】
    【分析】
    (1)将点A(3,4)代入中求出k的值,作AD⊥x轴于点D,ME⊥x轴于点E,证明△MEC∽△ADC,得到,求出ME=2,代入即可求出点M的坐标;
    (2)根据勾股定理求出OA=5,根据点A、M的坐标求出DE,即可得到OC的长度,由此求出答案.
    【详解】
    (1)将点A(3,4)代入中,得k=,
    ∵四边形OABC是平行四边形,
    ∴MA=MC,
    作AD⊥x轴于点D,ME⊥x轴于点E,
    ∴ME∥AD,
    ∴△MEC∽△ADC,
    ∴,
    ∴ME=2,
    将y=2代入中,得x=6,
    ∴点M的坐标为(6,2);

    (2)∵A(3,4),
    ∴OD=3,AD=4,
    ∴,
    ∵A(3,4),M(6,2),
    ∴DE=6-3=3,
    ∴CD=2DE=6,
    ∴OC=3+6=9,
    ∴的周长=2(OA+OC)=28.
    【点睛】
    此题考查平行四边形的性质,待定系数法求反比例函数的解析式,求函数图象上点的坐标,勾股定理,相似三角形的判定及性质.
    43.(2020·广东广州?中考真题)如图,中,.
    (1)作点关于的对称点;(要求:尺规作图,不写作法,保留作图痕迹)

    (2)在(1)所作的图中,连接,,连接,交于点.
    ①求证:四边形是菱形;
    ②取的中点,连接,若,,求点到的距离.
    【答案】(1)见解析;(2)①见解析:②.
    【解析】
    【分析】
    (1)过点做的垂线交于点,在的延长线上截取,即可求出所作的点关于的对称点;
    (2)①利用,得出,利用,以及得出四边形是菱形;
    ②利用为中位线求出的长度,利用菱形对角线垂直平分得出的长度,进而利用求出的长度,得出对角线的长度,然后利用面积法求出点到的距离即可.
    【详解】
    (1)解:如图:点即为所求作的点;

    (2)①证明:
    ∵,,
    又∵,
    ∴;
    ∴,
    又∵,
    ∴四边形是菱形;

    ②解:∵四边形是菱形,
    ∴,,
    又∵,
    ∴,
    ∵为的中点,
    ∴,
    ∵,
    ∴为的中位线,
    ∵,
    ∴,
    ∴菱形的边长为13,
    ∵,
    在中,由勾股定理得:,即:,
    ∴,
    设点到的距离为,利用面积相等得:

    解得:,
    即到的距离为.

    【点睛】
    本题考查了对称点的作法、菱形的判定以及菱形的面积公式的灵活应用,牢记菱形的判定定理,以及对角线乘积的一半等于菱形的面积是解决本题的关键.
    44.(2020·湖南郴州?中考真题)如图,在菱形中,将对角线分别向两端延长到点和,使得.连接.求证:四边形是菱形.

    【答案】见解析
    【解析】
    【分析】
    连接BD,由菱形ABCD的性质得出OA=OC,OB=OD,AC⊥BD,得出OE=OF,证出四边形BEDF是平行四边形,再由EF⊥BD,即可证出四边形BEDF是菱形.
    【详解】
    证明:连接BD,交AC于O,如图所示:

    ∵四边形ABCD是菱形,
    ∴OA=OC,OB=OD,AC⊥BD,
    ∵AE=CF,
    ∴OE=OF,
    ∴四边形BEDF是平行四边形,
    ∵EF⊥BD,
    ∴四边形BEDF是菱形.
    【点睛】
    本题考查了菱形的判定与性质,平行四边形的判定和性质,解决本题的关键是掌握菱形的判定与性质.
    45.(2020·广西玉林?中考真题)如图,四边形ABCD中,对角线AC与BD交于点O,且.
    (1)求证:四边形ABCD是正方形;
    (2)若H是AB上的一点(H与A,B不重合),连接DH,将线段DH绕点H顺时针旋转90度,得到线段HE,过点E分别作BC及AB的延长线的垂线,垂足分别是F,G,设四边形BGEF的面积为,以HB,BC为邻边的矩形面积为,且,当时,求AH的长;

    【答案】(1)证明见解析;(2).
    【解析】
    【分析】

    (1)由题根据可得对角线相等且互相平分,可得四边形ABCD是矩形,又因为在中,利用勾股定理逆定理可得出为等腰直角三角形,可得,所以也是等腰直角三角形,可得,所以得出四边形ABCD是正方形;
    (2)根据题意,易证得,可得,设,则,,可得,则,令,即:,解方程即可得出的长.
    【详解】

    解:(1)依题意可得:

    四边形为平行四边形;
    又,

    四边形为矩形;
    又在中,,且三边满足

    为等腰直角三角形;
    ,
    ,
    ,
    ,
    四边形为正方形;
    即:四边形为正方形.
    (2)由题可得:,




    在与中


    设,则,
    可得:,,
    令,可得,
    解得:,(舍去).
    即.
    【点睛】

    本题考查正方形的判定以及与正方形相关的几何证明.在证明正方形的时候必须先证明四边形是矩形或者菱形,然后得出正方形;如果题中涉及到边之间的关系是或倍的关系,则利用勾股定理逆定理验证是否是等腰直角三角形;如果遇到直角比较多的地方,注意观察题中是否有一线三垂直,要积累和熟练应用这个全等模型.
    46.(2020·内蒙古呼和浩特?中考真题)如图,正方形,G是边上任意一点(不与B、C重合),于点E,,且交于点F.

    (1)求证:;
    (2)四边形是否可能是平行四边形,如果可能请指出此时点G的位置,如不可能请说明理由.
    【答案】(1)见解析;(2)不可能,理由见解析
    【解析】
    【分析】
    (1)证明△ABF≌△DAE,从而得到AF=DE,AE=BF,可得结果;
    (2)若要四边形是平行四边形,则DE=BF,则∠BAF=45°,再证明∠BAF≠45°即可.
    【详解】
    解:(1)证明:∵正方形,
    ∴AB=AD,∠BAF+∠DAE=90°,
    ∵DE⊥AG,
    ∴∠DAE+∠ADE=90°,
    ∴∠ADE=∠BAF,
    又∵,
    ∴∠BFA=90°=∠AED,
    ∴△ABF≌△DAE(AAS),
    ∴AF=DE,AE=BF,
    ∴;
    (2)不可能,理由是:
    如图,若要四边形是平行四边形,
    已知DE∥BF,则当DE=BF时,四边形BFDE为平行四边形,
    ∵DE=AF,
    ∴BF=AF,即此时∠BAF=45°,
    而点G不与B和C重合,
    ∴∠BAF≠45°,矛盾,
    ∴四边形不能是平行四边形.

    【点睛】
    本题考查了全等三角形的判定和性质,正方形的性质,平行四边形的性质,解题的关键是找到三角形全等的条件.
    47.(2020·宁夏中考真题)
    如图,在中,点是的中点,连接并延长,交的延长线于点F.

    求证:.
    【答案】,证明略.
    【解析】
    【详解】
    证明:四边形是平行四边形,


    又,



    48.(2020·湖北荆州?中考真题)如图矩形ABCD中,AB=20,点E是BC上一点,将沿着AE折叠,点B刚好落在CD边上的点G处,点F在DG上,将沿着AF折叠,点D刚好落在AG上点H处,此时.
    (1)求证:
    (2)求AD的长;
    (3)求的值.

    【答案】(1)见解析;(2)12;(3)
    【解析】
    【分析】
    (1)由矩形的性质得出∠B=∠D=∠C=90°,由折叠的性质得出∠AGE=∠B=90°,∠AHF=∠D=90°,证得∠EGC=∠GFH,则可得出结论;
    (2)由面积关系可得出GH:AH=2:3,由折叠的性质得出AG=AB=GH+AH=20,求出GH=8,AH=12,则可得出答案;
    (3)由勾股定理求出DG=16,设DF=FH=x,则GF=16-x,由勾股定理得出方程,解出x=6,由锐角三角函数的定义可得出答案.
    【详解】
    (1)证明:因为四边形ABCD是矩形
    所以





    (2)解:




    (3)解:在直角三角形ADG中,

    由折叠对称性知,



    解得:x=6,
    所以:HF=6
    在直角三角形GHF中,

    【点睛】
    本题考查了矩形的性质,翻折变换,锐角三角函数,相似三角形的判定和性质,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题.
    49.(2020·湖南永州?中考真题)如图,内接于是的直径,与相切于点B,交的延长线于点D,E为的中点,连接.


    (1)求证:是的切线.
    (2)已知,求O,E两点之间的距离.
    【答案】(1)见解析;(2)
    【解析】
    【分析】

    (1)连接,先推出,然后根据是斜边上的中线,得出,从而可得,根据与相切,得到,
    可得,即,即可证明是的切线;
    (2)连接OE,先证明,可得,可求出AD,根据是的中位线,即可求出OE.
    【详解】

    (1)证明:连接,


    ∵,
    ∴,
    ∵是的直径,
    ∴,则,
    ∵是斜边上的中线,
    ∴,
    ∴,
    ∵与相切,
    ∴,即,
    ∴,即,
    ∴,
    ∴是的切线;
    (2)连接OE,


    ∵,
    ∴,
    ∴,即,
    ∴,
    ∵是的中位线,
    ∴.
    【点睛】

    本题考查了切线的判定和性质,相似三角形的判定进而性质,三角形中位线定理,直角三角形斜边上的中线等于斜边上的一半,掌握知识点,结合现有条件灵活运用是解题关键.
    50.(2020·海南中考真题)四边形是边长为的正方形,是的中点,连结,点是射线上一动点(不与点重合),连结,交于点.
    (1)如图1,当点是边的中点时,求证:;

    (2)如图2,当点与点重合时,求的长;

    (3)在点运动的过程中,当线段为何值时,?请说明理由.
    【答案】(1)见解析;(2);(3)
    【解析】
    【分析】
    (1)根据正方形的性质得到AB=AD,再由E、F分别是AB、BC的中点即可证明;
    (2)证明,然后再根据对应边成比例即可求出AG;
    (3)先证明DM=MG,然后在Rt△ADM中由勾股定理求出DM,进而求出CM,再证明,根据对应边成比例即可求出BF.
    【详解】
    解:(1)证明:四边形是正方形,

    点分别是的中点,


    .
    (2)在正方形中,,




    即,

    故答案为:.
    (3)当时,.理由如下:
    由(2)知,当点与重合(即)时,

    点应在的延长线上(即),
    如图所示,设交于点,

    若使,
    则有,


    又,


    在中,,
    即,





    即,
    ∴,
    ∴当时,.
    故答案为:.
    【点睛】
    此题是四边形和相似三角形的综合题,主要考查了正方形的性质,相似三角形的判定和性质,中点的性质,解本题的关键是三角形相似的判定的应用,难点是准确找出相似三角形.
    51.(2020·吉林中考真题)能够完全重合的平行四边形纸片和按图①方式摆放,其中,.点,分别在边,上,与相交于点.
    (探究)求证:四边形是菱形.
    (操作一)固定图①中的平行四边形纸片,将平行四边形纸片绕着点顺时针旋转一定的角度,使点与点重合,如图②,则这两张平行四边形纸片未重叠部分图形的周长和为______.

    (操作二)四边形纸片绕着点继续顺时针旋转一定的角度,使点与点重合,连接,,如图③若,则四边形的面积为______.
    【答案】探究:证明见解析;操作一:56;操作二:72.
    【解析】
    【分析】

    探究:先根据平行四边形的性质可得,再根据平行四边形的判定可得四边形是平行四边形,然后根据菱形的判定即可得证;
    操作一:先根据菱形的性质得出,再根据三角形全等的判定定理与性质可得,然后根据全等三角形的性质、三角形的周长公式即可得;
    操作二:先根据平行四边形的性质、等腰三角形的判定可得是等腰三角形,且平分,再根据等腰三角形的三线合一可得,,然后利用正弦三角函数可求出DN的长,从而可得DG的长,最后根据矩形的判定可得四边形是矩形,据此利用矩形的面积公式即可得.
    【详解】

    探究:四边形和都是平行四边形
    ,即
    四边形是平行四边形

    平行四边形是菱形;
    操作一:如图,设AE与DF相交于点H,AB与FG相交于点M
    四边形和是两个完全重合的平行四边形

    在和中,

    ,和的周长相等
    同理可得:
    、、、的周长均相等

    的周长为
    则这两张平行四边形纸片未重叠部分图形的周长和为
    故答案为:56;

    操作二:如图,设AB与DG相交于点N
    四边形和是两个完全重合的平行四边形

    是等腰三角形,且平分


    在中,,即
    解得


    四边形是平行四边形
    ,即
    平行四边形是矩形
    则四边形的面积为
    故答案为:72.

    【点睛】

    本题考查了平行四边形的判定与性质、三角形全等的判定与性质、菱形的判定、矩形的判定、正弦三角函数等知识点,熟记并灵活运用各判定定理与性质是解题关键.
    52.(2020·广西中考真题)如图,点在一条直线上,.

    (1)求证:;
    (2)连接,求证:四边形是平行四边形.
    【答案】(1)见解析;(2)见解析.
    【解析】
    【分析】
    (1)先证明,再利用SSS证明;
    (2)根据“一组对边平行且相等的四边形是平行四边形”证明四边形是平行四边形即可.
    【详解】
    证明:




    证明:



    四边形是平行四边形.
    【点睛】
    本题考查了平行四边形的判定、全等三角形的判定与性质、平行线的判定;熟练掌握平行四边形的判定方法,证明三角形全等是解决问题的关键.
    53.(2020·吉林长春?中考真题)如图,在中,是对角线、的交点,,,垂足分别为点、.

    (1)求证:.
    (2)若,,求的值.
    【答案】(1)见解析1;(2)
    【解析】
    【分析】
    (1)根据题意由平行四边形性质得,由ASA证得,即可得出结论;
    (2)根据题意由(1)得OE=OF,则OE=2,在Rt△OEB中,由三角函数定义即可得出结果.
    【详解】
    解:(1)证明:在中,
    ∵,


    又∵


    (2)∵,



    在中,,.
    【点睛】
    本题考查平行四边形的性质、全等三角形的判定与性质、三角函数定义等知识;熟练掌握平行四边形的性质与全等三角形的判定是解题的关键.
    54.(2020·重庆中考真题)如图,在平行四边形ABCD中,AE,CF分别平分∠BAD和∠DCB,交对角线BD于点E,F.
    (1)若∠BCF=60°,求∠ABC的度数;
    (2)求证:BE=DF.

    【答案】(1)60°;(2)证明见解析.
    【解析】
    【分析】
    (1)根据题意可得∠BCD=2∠BCF=120°,利用平行四边形的性质即可解答;
    (2)根据平行四边形的性质及角平分线即可证明△ABE≌△CDF,再利用全等三角形的性质即可证明.
    【详解】
    (1)∵CF平分∠DCB,
    ∴∠BCD=2∠BCF=120°
    ∵四边形ABCD是平行四边形,
    ∴∠ABC=180°-∠BCD=180°-120°=60°.
    (2)∵四边形ABCD是平行四边形,
    ∴∠BAD=∠DCB,AB=CD,AB∥CD,
    ∴∠ABE=∠CDF.
    ∵AE,CF分别平分∠BAD和∠DCB,
    ∴∠BAE=∠BAD,∠CDF=∠DCB,
    ∴∠BAE=∠CDF,
    ∴△ABE≌△CDF,
    ∴BE=DF.
    【点睛】
    本题主要考查了平行四边形的性质,解题的关键是熟悉平行四边形的性质以及全等三角形的判定.
    55.(2020·甘肃金昌?中考真题)如图,点,分别在正方形的边,上,且,把绕点顺时针旋转得到.
    (1)求证:≌.
    (2)若,,求正方形的边长.

    【答案】(1)证明见解析;(2)正方形的边长为6.
    【解析】
    【分析】
    (1)先根据旋转的性质可得,再根据正方形的性质、角的和差可得,然后根据三角形全等的判定定理即可得证;
    (2)设正方形的边长为x,从而可得,再根据旋转的性质可得,从而可得,然后根据三角形全等的性质可得,最后在中,利用勾股定理即可得.
    【详解】
    (1)由旋转的性质得:
    四边形ABCD是正方形
    ,即
    ,即


    在和中,

    (2)设正方形的边长为x,则


    由旋转的性质得:

    由(1)已证:

    又四边形ABCD是正方形

    则在中,,即
    解得或(不符题意,舍去)
    故正方形的边长为6.
    【点睛】
    本题考查了正方形的性质、旋转的性质、三角形全等的判定定理与性质、勾股定理等知识点,较难的是题(2),熟练掌握旋转的性质与正方形的性质是解题关键.
    56.(2020·山东淄博?中考真题)如图,在直角坐标系中,四边形OABC是平行四边形,经过A(﹣2,0),B,C三点的抛物线y=ax2+bx+(a<0)与x轴的另一个交点为D,其顶点为M,对称轴与x轴交于点E.
    (1)求这条抛物线对应的函数表达式;
    (2)已知R是抛物线上的点,使得△ADR的面积是平行四边形OABC的面积的,求点R的坐标;
    (3)已知P是抛物线对称轴上的点,满足在直线MD上存在唯一的点Q,使得∠PQE=45°,求点P的坐标.

    【答案】(1)y=﹣x2+x+;(2)(1+,4)或(1﹣,4)或(1+,﹣4)或(1﹣,﹣4);(3)P(1,120﹣168)
    【解析】
    【分析】
    【详解】
    解:(1)OA=2=BC,故函数的对称轴为x=1,则x=﹣=1①,
    将点A的坐标代入抛物线表达式得:0=4a﹣2b+②,
    联立①②并解得,故抛物线的表达式为:y=﹣x2+x+③;
    (2)由抛物线的表达式得,点M(1,3)、点D(4,0);
    ∵△ADR的面积是▱OABC的面积的,
    ∴×AD×|yR|=×OA×OB,则×6×|yR|=×2×,解得:yR=±④,
    联立④③并解得,或
    故点R的坐标为(1+,4)或(1﹣,4)或(1+,﹣4)或(1﹣,﹣4);
    (3)作△PEQ的外接圆R,
    ∵∠PQE=45°,故∠PRE=90°,
    则△PRE为等腰直角三角形,
    当直线MD上存在唯一的点Q,则RQ⊥MD,
    点M、D的坐标分别为(1,4)、(4,0),
    则ME=4,ED=4﹣1=3,则MD=5,
    过点R作RH⊥ME于点H,
    设点P(1,2m),则PH=HE=HR=m,则圆R的半径为m,则点R(1+m,m),
    S△MED=S△MRD+S△MRE+S△DRE,即×EM•ED=×MD×RQ+×ED•yR+×ME•RH,
    ∴×4×3=×5×m+×4×m+×3×m,解得m=60﹣84,故点P(1,120﹣168).
    57.(2020·黑龙江大庆?中考真题)如图,在矩形中,为对角线的中点,过点作直线分别与矩形的边,交于,两点,连接,.

    (1)求证:四边形为平行四边形;
    (2)若,,且,求的长
    【答案】(1)证明见解析;(2)
    【解析】
    【分析】

    (1)通过证明△AOM和△CON全等,可以得到,又因为,所以可以证明四边形为平行四边形;
    (2)根据,从而可以证明平行四边形是菱形,得到,再使用勾股定理计算出BN的长度,从而可以得到DM的长度.
    【详解】

    (1)证明:∵四边形ABCD是矩形
    ∴,

    在△AOM和△CON中

    ∴△AOM△CON

    又∵
    ∴四边形为平行四边形.
    (2)∵四边形为平行四边形

    ∴平行四边形是菱形


    设BN的长度为x
    在Rt△ABN中,,





    【点睛】

    (1)本题主要考查了如何证明平行四边形,明确一组对边平行且相等的四边形是平行四边形是解题的关键;(2)本题主要考查了菱形的证明以及勾股定理的应用,知晓对角线互相垂直的平行四边形是菱形是解题的关键.
    58.(2020·山东烟台?中考真题)如图,在平行四边形ABCD中,∠D=60°,对角线AC⊥BC,⊙O经过点A,B,与AC交于点M,连接AO并延长与⊙O交于点F,与CB的延长线交于点E,AB=EB.
    (1)求证:EC是⊙O的切线;
    (2)若AD=2,求的长(结果保留π).

    【答案】(1)见解析;(2)
    【解析】
    【分析】

    (1)证明:连接OB,根据平行四边形的性质得到∠ABC=∠D=60°,求得∠BAC=30°,根据等腰三角形的性质和三角形的外角的性质得到∠ABO=∠OAB=30°,于是得到结论;
    (2)根据平行四边形的性质得到BC=AD=2,过O作OH⊥AM于H,则四边形OBCH是矩形,解直角三角形即可得到结论.
    【详解】

    (1)证明:连接OB,

    ∵四边形ABCD是平行四边形,
    ∴∠ABC=∠D=60°,
    ∵AC⊥BC,
    ∴∠ACB=90°,
    ∴∠BAC=30°,
    ∵BE=AB,
    ∴∠E=∠BAE,
    ∵∠ABC=∠E+∠BAE=60°,
    ∴∠E=∠BAE=30°,
    ∵OA=OB,
    ∴∠ABO=∠OAB=30°,
    ∴∠OBC=30°+60°=90°,
    ∴OB⊥CE,
    ∴EC是⊙O的切线;
    (2)∵四边形ABCD是平行四边形,
    ∴BC=AD=2,
    过O作OH⊥AM于H,

    则四边形OBCH是矩形,
    ∴OH=BC=2,
    ∴OA==4,∠AOM=2∠AOH=60°,
    ∴的长度==.
    【点睛】

    本题考查了切线的判定,锐角三角函数,平行四边形的性质,矩形的判定和性质,弧长的计算,正确的作出辅助线是解题的关键.
    59.(2020·云南昆明?中考真题)如图1,在矩形ABCD中,AB=5,BC=8,点E,F分别为AB,CD的中点.
    (1)求证:四边形AEFD是矩形;
    (2)如图2,点P是边AD上一点,BP交EF于点O,点A关于BP的对称点为点M,当点M落在线段EF上时,则有OB=OM.请说明理由;
    (3)如图3,若点P是射线AD上一个动点,点A关于BP的对称点为点M,连接AM,DM,当△AMD是等腰三角形时,求AP的长.

    【答案】(1)见解析;(2)见解析;(3)满足条件的PA的值为或或8或10.
    【解析】
    【分析】
    (1)根据四边形ABCD是矩形,先证明四边形AEFD是平行四边形,根据∠A=90°,即可得到结果;
    (2)连接PM.BM,证明EF∥AD,推出BO=OP,根据翻折可得到结果;
    (3)分类讨论:当MA=MD时,连接BM,过点M作MH⊥AD于H交BC于F;当AM=AD时,连接BM,设BP交AM于F;当DA=DM时,此时点P与D重合,AP=8;当MA=MD时,连接BM,过点M作MH⊥AD于H交BC于F;
    【详解】
    (1)证明:∵四边形ABCD是矩形,
    ∴AB=CD,AB∥CD,∠A=90°,
    ∵AE=EB,DF=FC,
    ∴AE=DF,AE∥DF,
    ∴四边形AEFD是平行四边形,
    ∵∠A=90°,
    ∴四边形AEFD是矩形.
    (2)证明:如图2中,连接PM.BM.

    ∵四边形AEFD是矩形,
    ∴EF∥AD,
    ∵BE=AE,
    ∴BO=OP,
    由翻折可知,∠PMB=∠A=90°,
    ∴OM=OB=OP.
    (3)解:如图3﹣1中,当MA=MD时,连接BM,过点M作MH⊥AD于H交BC于F.

    ∵MA=MD,MH⊥AD,
    ∴AH=HD=4,
    ∵∠BAH=∠ABF=∠AHF=90°,
    ∴四边形ABFH是矩形,
    ∴BF=AH=4,AB=FH=5,
    ∴∠BFM=90°,
    ∵BM=BA=5,
    ∴FM=,
    ∴HM=HF=FM=5﹣3=2,
    ∵∠ABP+∠APB=90°,∠MAH+∠APB=90°,
    ∴∠ABP=∠MAH,
    ∵∠BAP=∠AHM=90°,
    ∴△ABP∽△HAM,
    ∴,
    ∴,
    ∴AP=.
    如图3﹣2中,当AM=AD时,连接BM,设BP交AM于F.

    ∵AD=AM=8,BA=BM=5,BF⊥AM,
    ∴AF=FM=4,
    ∴BF=,
    ∵tan∠ABF=,
    ∴,
    ∴AP=,
    如图3﹣3中,当DA=DM时,此时点P与D重合,AP=8.

    如图3﹣4中,当MA=MD时,连接BM,过点M作MH⊥AD于H交BC于F.

    ∵BM=5,BF=4,
    ∴FM=3,MH=3+5=8,
    由△ABP∽△HAM,可得,
    ∴,
    ∴AP=10,
    综上所述,满足条件的PA的值为或或8或10.
    【点睛】
    本题主要考查了利用矩形的性质、相似三角形的性质、勾股定理的性质进行求解,准确分析题意是解题的关键.
    60.(2020·四川凉山?中考真题)如图,AB是半圆AOB的直径,C是半圆上的一点,AD平分交半圆于点D,过点D作与AC的延长线交于点H.

    (1)求证:DH是半圆的切线;
    (2)若,,求半圆的直径.
    【答案】(1)见详解;(2)12
    【解析】
    【分析】
    (1)连接OD,先证明OD∥AH,然后根据DH⊥AH,可得OD⊥DH,即可证明;
    (2)过点O作OE⊥AH于E,由(1)知,四边形ODHE是矩形,可得OE=DH=,
    在Rt△AOE中,根据sin∠BAC=,sin∠BAC=,可得AO==×=6,即可求出直径.
    【详解】
    (1)连接OD,

    ∵OA=OD,
    ∴∠OAD=∠ODA,
    ∵AD平分,
    ∴∠CAD=∠OAD,
    ∴∠CAD=∠ODA,
    ∴OD∥AH,
    ∵DH⊥AH,
    ∴OD⊥DH,
    ∴DH是半圆的切线;
    (2)过点O作OE⊥AH于E,由(1)知,四边形ODHE是矩形,

    ∴OE=DH=,
    在Rt△AOE中,
    ∵sin∠BAC=,sin∠BAC=,
    ∴AO==×=6,
    ∴AB=2OA=12,
    ∴半圆的直径长为12.
    【点睛】
    本题考查了切线的判定,平行线的性质和判定,矩形的性质和判定,解直角三角形,灵活运用所学知识点是解题关键.
    61.(2020·辽宁沈阳?中考真题)如图,在矩形中,对角线的垂直平分线分别与边和边的延长线交于点,,与边交于点,垂足为点.
    (1)求证:;
    (2)若,,请直接写出的长为__________.

    【答案】(1)详见解析;(2)
    【解析】
    【分析】

    (1)利用矩形的性质和线段垂直平分线的性质证明三角形全等即可.
    (2)分别由勾股定理和线段垂直平分线求AC、AO,再证明∽,得到,求出AE即可.
    【详解】

    (1)证明:∵是的垂直平分线,
    ∴.
    ∵矩形,
    ∴即
    ∴.
    在和中

    ∴.
    (2)解:由勾股定理

    ∵MN是AC的垂直平分线




    ∴∽,
    ∴,即
    解得.
    【点睛】

    本题考查了矩形的性质、线段垂直平分线的性质、勾股定理和相似三角形的性质与判定,解答关键是根据相似三角形构造方程求解.
    62.(2020·江苏宿迁?中考真题)如图,在正方形ABCD中,点E,F在AC上,且AF=CE.求证:四边形BEDF是菱形.

    【答案】见解析
    【解析】
    【分析】
    由正方形的性质可得AB=AD=CD=BC,∠DAE=∠BAE=∠BCF=∠DCF=45°,由“SAS”可证△ABE≌△ADE,△BFC≌△DFC,△ABE≌△CBF,可得BE=BF=DE=DF,可得结论.
    【详解】
    ∵四边形ABCD是正方形,
    ∴AB=AD=CD=BC,∠DAE=∠BAE=∠BCF=∠DCF=45°,
    在△ABE和△ADE中,

    ∴△ABE≌△ADE(SAS),
    ∴BE=DE,
    同理可得△BFC≌△DFC,
    可得BF=DF,
    ∵AF=CE,
    ∴AF-EF=CE-EF,即AE=CF,
    在△ABE和△CBF中,

    ∴△ABE≌△CBF(SAS),
    ∴BE=BF,
    ∴BE=BF=DE=DF,
    ∴四边形BEDF是菱形.
    【点睛】
    本题考查了正方形的性质,菱形的判定,全等三角形的判定和性质,掌握正方形的性质是本题的关键.
    63.(2020·云南中考真题)如图,四边形是菱形,点为对角线的中点,点在的延长线上,,垂足为,点在的延长线上,,垂足为.

    (1)若,求证:四边形是菱形;
    (2)若,的面积为16,求菱形的面积.
    【答案】(1)证明见解析;(2)20.
    【解析】
    【分析】
    (1)由直角三角形斜边中线等于斜边一半和30度直角三角形性质性质可证,即可证明结论;
    (2)由根据三角形面积求法可求AE,设AB=x,在,由勾股定理列方程即可求出菱形边长,进而可求面积.
    【详解】
    解:∵四边形是菱形,,
    ∴,
    ∵,,
    ∴,
    又∵,
    ∴,

    同理可得:,
    ∴,即:四边形是菱形;
    (2)∵,
    ∴,
    ∴,
    在四边形是菱形中,设,则
    在中,,
    ∴,
    解得,
    ∴菱形ABCD面积=.
    【点睛】
    本题主要考查了菱形的判定和性质,涉及了直角三角形性质和勾股定理.解题关键是灵活运用直角三角形性质得出线段之间发热关系.
    64.(2020·山东滨州?中考真题)如图,过□ABCD对角线AC与BD的交点E作两条互相垂直的直线,分别交边AB、BC.CD、DA于点P、M、Q、N.
    (1)求证:PBE≌QDE;
    (2)顺次连接点P、M、Q、N,求证:四边形PMQN是菱形.

    【答案】(1)见解析;(2)见解析
    【解析】
    【分析】
    (1)由ASA证△PBE≌△QDE即可;
    (2)由全等三角形的性质得出EP=EQ,同理△BME≌△DNE(ASA),得出EM=EN,证出四边形PMQN是平行四边形,由对角线PQ⊥MN,即可得出结论.
    【详解】
    (1)证明:∵四边形ABCD是平行四边形,
    ∴EB=ED,AB∥CD,
    ∴∠EBP=∠EDQ,
    在△PBE和△QDE中,

    ∴△PBE≌△QDE(ASA);
    (2)证明:如图所示:

    ∵△PBE≌△QDE,
    ∴EP=EQ,
    同理:△BME≌△DNE(ASA),
    ∴EM=EN,
    ∴四边形PMQN是平行四边形,
    ∵PQ⊥MN,
    ∴四边形PMQN是菱形.
    【点睛】
    本题考查了平行四边形的判定与性质,菱形的判定,全等三角形的判定与性质;熟练掌握菱形的判定和平行四边形的判定与性质,证明三角形全等是解题的关键.
    65.(2020·江苏镇江?中考真题)如图,▱ABCD中,∠ABC的平分线BO交边AD于点O,OD=4,以点O为圆心,OD长为半径作⊙O,分别交边DA、DC于点M、N.点E在边BC上,OE交⊙O于点G,G为的中点.
    (1)求证:四边形ABEO为菱形;
    (2)已知cos∠ABC=,连接AE,当AE与⊙O相切时,求AB的长.

    【答案】(1)证明见解析;(2)2.
    【解析】
    【分析】
    (1)先由G为的中点及同弧所对的圆周角和圆心角的关系得出∠MOG=∠MDN,再由平行四边形的性质得出AO∥BE,∠MDN+∠A=180°,进而判定四边形ABEO是平行四边形,然后证明AB=AO,则可得结论;
    (2)过点O作OP⊥BA,交BA的延长线于点P,过点O作OQ⊥BC于点Q,设AB=AO=OE=x,则由cos∠ABC=,可用含x的式子分别表示出PA、OP及OQ,由勾股定理得关于x的方程,解得x的值即可.
    【详解】
    解:(1)证明:∵G为的中点,
    ∴∠MOG=∠MDN.
    ∵四边形ABCD是平行四边形.
    ∴AO∥BE,∠MDN+∠A=180°,
    ∴∠MOG+∠A=180°,
    ∴AB∥OE,
    ∴四边形ABEO是平行四边形.
    ∵BO平分∠ABE,
    ∴∠ABO=∠OBE,
    又∵∠OBE=∠AOB,
    ∴∠ABO=∠AOB,
    ∴AB=AO,
    ∴四边形ABEO为菱形;
    (2)如图,过点O作OP⊥BA,交BA的延长线于点P,过点O作OQ⊥BC于点Q,设AE交OB于点F,

    则∠PAO=∠ABC,
    设AB=AO=OE=x,则
    ∵cos∠ABC=,
    ∴cos∠PAO=,
    ∴=,
    ∴PA=x,
    ∴OP=OQ=x
    当AE与⊙O相切时,由菱形的对角线互相垂直,可知F为切点,
    ∴由勾股定理得:,
    解得:x=2.
    ∴AB的长为2.
    【点睛】
    本题主要考查菱形的证明,切线的性质,三角函数以及勾股定理,巧妙的作出辅助线和列出勾股定理的方程是解决本题的关键.
    66.(2020·重庆中考真题)如图,在平行四边形ABCD中,对角线AC,BD相交于点O,分别过点A,C作,,垂足分别为E,F.AC平分.
    (1)若,求的度数;
    (2)求证:.

    【答案】(1);(2)见解析
    【解析】
    【分析】
    (1)利用三角形内角和定理求出,利用角平分线的定义求出,再利用平行线的性质解决问题即可.
    (2)证明可得结论.
    【详解】
    (1)解:,



    平分,

    四边形是平行四边形,


    (2)证明:四边形是平行四边形,

    ,,




    【点睛】
    本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握相关的知识点.
    67.(2020·内蒙古呼伦贝尔?中考真题)已知:如图,在正方形中,对角线相交于点,点分别是边上的点,且.
    求证:.

    【答案】见解析
    【解析】
    【分析】
    由正方形的性质得出OD=OC,∠ODF=∠OCE=45°,再证明∠COE=∠DOF,从而得到△COE≌△DOF,即可证明CE=DF.
    【详解】
    解:∵四边形ABCD为正方形,
    ∴OD=OC,∠ODF=∠OCE=45°,∠COD=90°,
    ∵∠EOF=90°,即∠COE+∠COF=90°,
    ∴∠COE=∠DOF,
    ∴△COE≌△DOF(ASA),
    ∴CE=DF.
    【点睛】
    本题考查了正方形的性质,全等三角形的判定和性质,解题的关键是根据正方形的性质得出条件证明全等.
    68.(2020·黑龙江鹤岗?中考真题)以的两边、为边,向外作正方形和正方形,连接,过点作于,延长交于点.
     
    (1)如图1,若,,易证:;
    (2)如图2,;如图3,,(1)中结论,是否成立,若成立,选择一个图形进行证明;若不成立,写出你的结论,并说明理由.
    【答案】(1)见解析;(2)时,(1)中结论成立,证明见解析;时,(1)中结论成立,证明见解析.
    【解析】
    【分析】
    (1)由等腰直角三角形的性质得出∠MAC=45°,证得∠EAN=∠NAG,由等腰三角形的性质得出结论;
    (2)如图1,2,证明方法相同,利用“AAS”证明△ABM和△EAP全等,根据全等三角形对应边相等可得EP=AM,同理可证GQ=AM,从而得到EP=GQ,再利用“AAS”证明△EPN和△GQN全等,根据全等三角形对应边相等可得EN=NG.
    【详解】
    (1)证明:∵,,∴,
    ∵,
    ∴,
    ∴,
    同理,
    ∴,
    ∵四边形和四边形为正方形,
    ∴,
    ∴.
    (2)如图1,时,(1)中结论成立.

    理由:过点作交的延长线于,
    过点作于,
    ∵四边形是正方形,
    ∴,,
    ∴,
    ∵,
    ∴,
    ∴,
    在和中,

    ∴,
    ∴,
    同理可得:,
    ∴,
    在和中,

    ∴,
    ∴.
    如图2,时,(1)中结论成立.

    理由:过点作交的延长线于,
    过点作于,
    ∵四边形是正方形,
    ∴,,
    ∴,
    ∵,
    ∴,
    ∴,
    在和中,

    ∴,
    ∴,
    同理可得:,
    ∴,
    在和中,

    ∴,
    ∴.
    【点睛】
    本题是四边形综合题,考查了正方形的性质,全等三角形的判定及性质,等腰三角形的性质,等腰直角三角形的性质等知识;正确作出辅助线,构造全等三角形,运用全等三角形的性质是解题的关键.
    69.(2020·黑龙江鹤岗?中考真题)如图,在平面直角坐标系中,矩形的边长是方程的根,连接,,并过点作,垂足为,动点从点以每秒个单位长度的速度沿方向匀速运动到点为止;点沿线段以每秒个单位长度的速度由点向点匀速运动,到点为止,点与点同时出发,设运动时间为秒

    (1)线段______;
    (2)连接和,求的面积与运动时间的函数关系式;
    (3)在整个运动过程中,当是以为腰的等腰三角形时,直接写出点的坐标.
    【答案】(1);(2);(3)(,)或(,)
    【解析】
    【分析】
    (1)解方程求出AB的长,由直角三角形的性质可求BD,BC的长,CN的长;
    (2)分三种情况讨论,由三角形的面积可求解;
    (3)分两种情况讨论,由等腰三角形的性质和勾股定理可求解.
    【详解】
    (1)解方程得:(舍去),
    ∴AB=6,
    ∵四边形是矩形,,
    ∴AB=CD=6,BD=2AB=12,
    ∴BC=AD=,
    ∵,
    ∴,
    故答数为:;
    (2)如图1,过点M作MH⊥BD于H,

    ∵AD∥BC,
    ∴∠ADB=∠DBC=30°,
    ∴MH=MD=,
    ∵∠DBC=30°,CN⊥BD,
    ∴BN=,
    当点P在线段BN上即时,
    △PMN的面积;
    当点P与点N重合即时,s=0,
    当点P在线段ND上即时,
    △PMN的面积;
    ∴;
    (3)如图,过点P作PE⊥BC于E,

    当PN=PM=9-2t时,则DM=,MH=DM=,DH=,
    ∵,
    ∴,
    解得:或,
    即或,
    则BE=或BE=,
    ∴点P的坐标为(,)或(,);
    当PN=NM=9-2t时,
    ∵,
    ∴,
    解得或24(不合题意舍去),
    ∴BP=6,PE=BP=3,BE=PE=3
    ∴点P的坐标为(,),
    综上所述:点P坐标为(,)或(,) .
    【点睛】
    本题是四边形综合题,考查了矩形的性质,一元二次方程的解法,三角形的面积公式,勾股定理,等腰三角形的性质,坐标与图形等知识,利用分类讨论思想解决问题是本题的关键.
    70.(2020·浙江嘉兴?中考真题)在一次数学研究性学习中,小兵将两个全等的直角三角形纸片ABC和DEF拼在一起,使点A与点F重合,点C与点D重合(如图1),其中∠ACB=∠DFE=90°,BC=EF=3cm,AC=DF=4cm,并进行如下研究活动.
    活动一:将图1中的纸片DEF沿AC方向平移,连结AE,BD(如图2),当点F与点C重合时停止平移.
    (思考)图2中的四边形ABDE是平行四边形吗?请说明理由.
    (发现)当纸片DEF平移到某一位置时,小兵发现四边形ABDE为矩形(如图3).求AF的长.
    活动二:在图3中,取AD的中点O,再将纸片DEF绕点O顺时针方向旋转α度(0≤α≤90),连结OB,OE(如图4).
    (探究)当EF平分∠AEO时,探究OF与BD的数量关系,并说明理由.

    【答案】【思考】是,理由见解析;【发现】;【探究】BD=2OF,理由见解析;
    【解析】
    【分析】
    【思考】由全等三角形的性质得出AB=DE,∠BAC=∠EDF,则AB∥DE,可得出结论;
    【发现】连接BE交AD于点O,设AF=x(cm),则OA=OE=(x+4),得出OF=OA﹣AF=2﹣x,由勾股定理可得,解方程求出x,则AF可求出;
    【探究】如图2,延长OF交AE于点H,证明△EFO≌△EFH(ASA),得出EO=EH,FO=FH,则∠EHO=∠EOH=∠OBD=∠ODB,可证得△EOH≌△OBD(AAS),得出BD=OH,则结论得证.
    【详解】
    解:【思考】四边形ABDE是平行四边形.
    证明:如图,∵△ABC≌△DEF,
    ∴AB=DE,∠BAC=∠EDF,
    ∴AB∥DE,
    ∴四边形ABDE是平行四边形;
    【发现】
    如图1,连接BE交AD于点O,

    ∵四边形ABDE为矩形,
    ∴OA=OD=OB=OE,
    设AF=x(cm),则OA=OE=(x+4),
    ∴OF=OA﹣AF=2﹣x,
    在Rt△OFE中,∵OF2+EF2=OE2,
    ∴,
    解得:x=,
    ∴AF=cm.
    【探究】BD=2OF,
    证明:如图2,延长OF交AE于点H,

    ∵四边形ABDE为矩形,
    ∴∠OAB=∠OBA=∠ODE=∠OED,OA=OB=OE=OD,
    ∴∠OBD=∠ODB,∠OAE=∠OEA,
    ∴∠ABD+∠BDE+∠DEA+∠EAB=360°,
    ∴∠ABD+∠BAE=180°,
    ∴AE∥BD,
    ∴∠OHE=∠ODB,
    ∵EF平分∠OEH,
    ∴∠OEF=∠HEF,
    ∵∠EFO=∠EFH=90°,EF=EF,
    ∴△EFO≌△EFH(ASA),
    ∴EO=EH,FO=FH,
    ∴∠EHO=∠EOH=∠OBD=∠ODB,
    ∴△EOH≌△OBD(AAS),
    ∴BD=OH=2OF.
    【点睛】
    本题考查了图形的综合变换,涉及了三角形全等的判定与性质、平行四边形的判定与性质等,准确识图,熟练掌握和灵活运用相关知识是解题的关键.
    71.(2020·江苏泰州?中考真题)如图,在中,点为的中点,弦、互相垂直,垂足为,分别与、相交于点、,连接、.

    (1)求证:为的中点.
    (2)若的半径为,的度数为,求线段的长.
    【答案】(1)证明见详解;(2).
    【解析】
    【分析】
    (1)通过同弧或等弧所对的圆周角相等,结合、互相垂直,证明,可得结果;
    (2)连接AC,OA,OB,AB,证明M为AE中点,得MN为的中位线,结合的度数为90°,半径为8,得到AB的长度,进而得到MN长度.
    【详解】
    (1)∵点为的中点






    ∴°
    在和中



    ∴点N为BE中点
    (2)连接CA,AB,OA,OB,如图所示:

    ∵点为的中点


    在和中


    ∴,即M为AE中点
    ∵N为BE中点
    ∴MN为的中位线
    又∵的半径为,的度数为
    ∴,OA=OB=8


    【点睛】
    本题考查了利用圆周角定理的性质结合全等三角形证明中点问题,同时考查了直角三角形的边长的计算,及中位线的作用,熟知以上知识是解题的关键.
    72.(2020·辽宁朝阳?中考真题)如图,在中,,M是AC边上的一点,连接BM,作于点P,过点C作AC的垂线交AP的延长线于点E.

    (1)如图1,求证:;
    (2)如图2,以为邻边作,连接GE交BC于点N,连接AN,求的值;
    (3)如图3,若M是AC的中点,以为邻边作,连接GE交BC于点M,连接AN,经探究发现,请直接写出的值.
    【答案】(1)见解析;(2);(3)
    【解析】
    【分析】
    (1)通过证全等可以证得AM=CE;
    (2)过点E作EFCE交BC于F,通过证明全等,证得AG=AE,通过证得GN=EN,最后由直角三角形的性质证得结论;
    (3)延长GM交BC于点F,连接AF,在中,由勾股定理求出AN的长,在中,求出EG的长即可得到答案.
    【详解】
    (1)证明








    (2)过点E作CE的垂线交BC于点F






    ∴四边形是平行四边形



    由(1)得







    (3)如图,延长GM交BC于F,连接AF

    在中,ABGM,,






    ,
    ,设CN=x,则BC=8x,AF=FC=4x,FN=3x,
    ,
    在, , ,


    由(1)知,


    在中,EG=,
    .
    【点评】
    本题考查了平行四边形的性质、全等三角形的判定和性质,等腰直角三角形的判定和性质、勾股定理等知识,解题的关键是正确作出辅助线,寻找全等三角形解决问题,属于压轴题.
    73.(2020·甘肃兰州?中考真题)如图,在中,过点C作,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF
    求证:四边形AFCD是平行四边形.
    若,,,求AB的长.

    【答案】证明见解析;.
    【解析】
    【分析】
    由E是AC的中点知,由知,据此根据“AAS”即可证≌,从而得,结合即可得证;
    证∽得,据此求得,由及可得答案.
    【详解】
    是AC的中点,



    在和中,

    ≌,

    又,即,
    四边形AFCD是平行四边形;

    ∽,
    ,即,
    解得:,
    四边形AFCD是平行四边形,


    【点睛】
    本题考查了平行四边形的判定与性质,全等三角形的判定与性质,相似三角形的判定与性质,熟练掌握相关的性质及定理是解题的关键.
    74.(2020·上海中考真题)如图,在直角梯形ABCD中,,∠DAB=90°,AB=8,CD=5,BC=3.
    (1)求梯形ABCD的面积;
    (2)联结BD,求∠DBC的正切值.

    【答案】(1)39;(2).
    【解析】
    【分析】
    (1)过C作CE⊥AB于E,推出四边形ADCE是矩形,得到AD=CE,AE=CD=5,根据勾股定理得到,即可求出梯形的面积;
    (2) 过C作CH⊥BD于H,根据相似三角形的性质得到,根据勾股定理得到,即可求解.
    【详解】
    解:(1)过C作CE⊥AB于E,如下图所示:

    ∵ABDC,∠DAB=90°,∴∠D=90°,
    ∴∠A=∠D=∠AEC=90°,
    ∴四边形ADCE是矩形,
    ∴AD=CE,AE=CD=5,
    ∴BE=AB﹣AE=3.
    ∵BC=3,∴CE==6,
    ∴梯形ABCD的面积=×(5+8)×6=39,
    故答案为:39.
    (2)过C作CH⊥BD于H,如下图所示:

    ∵CDAB,∴∠CDB=∠ABD.
    ∵∠CHD=∠A=90°,
    ∴△CDH∽△DBA,∴,
    ∵BD===10,
    ∴,∴CH=3,
    ∴BH===6,
    ∴∠DBC的正切值===.
    故答案为:.
    【点睛】
    本题考查了直角梯形,解直角三角形,相似三角形的判定和性质,矩形的判定和性质,正确的作出辅助线是解题的关键.
    75.(2020·黑龙江齐齐哈尔?中考真题)综合与实践
    在线上教学中,教师和学生都学习到了新知识,掌握了许多新技能.例如教材八年级下册的数学活动﹣﹣折纸,就引起了许多同学的兴趣.在经历图形变换的过程中,进一步发展了同学们的空间观念,积累了数学活动经验.
    实践发现:
    对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;再一次折叠纸片,使点A落在EF上的点N处,并使折痕经过点B,得到折痕BM,把纸片展平,连接AN,如图①.

    (1)折痕BM   (填“是”或“不是”)线段AN的垂直平分线;请判断图中△ABN是什么特殊三角形?答:   ;进一步计算出∠MNE=   °;
    (2)继续折叠纸片,使点A落在BC边上的点H处,并使折痕经过点B,得到折痕BG,把纸片展平,如图②,则∠GBN=   °;
    拓展延伸:
    (3)如图③,折叠矩形纸片ABCD,使点A落在BC边上的点A'处,并且折痕交BC边于点T,交AD边于点S,把纸片展平,连接AA'交ST于点O,连接AT.
    求证:四边形SATA'是菱形.
    解决问题:
    (4)如图④,矩形纸片ABCD中,AB=10,AD=26,折叠纸片,使点A落在BC边上的点A'处,并且折痕交AB边于点T,交AD边于点S,把纸片展平.同学们小组讨论后,得出线段AT的长度有4,5,7,9.请写出以上4个数值中你认为正确的数值   .
    【答案】(1)是;等边三角形;60°;(2)15°;(3)见解析;(4)7、9
    【解析】
    【分析】
    (1)由折叠的性质可得AN=BN,AE=BE,∠NEA=90°,BM垂直平分AN,∠BAM=∠BNM=90°,可证△ABN是等边三角形,由等边三角形的性质和直角三角形的性质可求解;
    (2)由折叠的性质可得∠ABG=∠HBG=45°,可求解;
    (3)由折叠的性质可得AO=A'O,AA'⊥ST,由“AAS”可证△ASO≌△A'TO,可得SO=TO,由菱形的判定可证四边形SATA'是菱形;
    (4)先求出AT的范围,即可求解.
    【详解】
    解:(1)如图①∵对折矩形纸片ABCD,使AD与BC重合,
    ∴EF垂直平分AB,
    ∴AN=BN,AE=BE,∠NEA=90°,
    ∵再一次折叠纸片,使点A落在EF上的点N处,
    ∴BM垂直平分AN,∠BAM=∠BNM=90°,
    ∴AB=BN,
    ∴AB=AN=BN,
    ∴△ABN是等边三角形,
    ∴∠EBN=60°,
    ∴∠ENB=30°,
    ∴∠MNE=60°,
    故答案为:是,等边三角形,60;
    (2)∵折叠纸片,使点A落在BC边上的点H处,
    ∴∠ABG=∠HBG=45°,
    ∴∠GBN=∠ABN﹣∠ABG=15°,
    故答案为:15°;
    (3)∵折叠矩形纸片ABCD,使点A落在BC边上的点A'处,
    ∴ST垂直平分AA',
    ∴AO=A'O,AA'⊥ST,
    ∵AD∥BC,
    ∴∠SAO=∠TA'O,∠ASO=∠A'TO,
    ∴△ASO≌△A'TO(AAS)
    ∴SO=TO,
    ∴四边形ASA'T是平行四边形,
    又∵AA'⊥ST,
    ∴边形SATA'是菱形;
    (4)∵折叠纸片,使点A落在BC边上的点A'处,
    ∴AT=A'T,
    在Rt△A'TB中,A'T>BT,
    ∴AT>10﹣AT,
    ∴AT>5,
    ∵点T在AB上,
    ∴当点T与点B重合时,AT有最大值为10,
    ∴5<AT≤10,
    ∴正确的数值为7,9,
    故答案为:7,9.
    【点睛】
    本题考查矩形和菱形的性质和判定,关键在于结合图形,牢记概念.
    76.(2020·黑龙江齐齐哈尔?中考真题)综合与探究
    在平面直角坐标系中,抛物线y=x2+bx+c经过点A(﹣4,0),点M为抛物线的顶点,点B在y轴上,且OA=OB,直线AB与抛物线在第一象限交于点C(2,6),如图①.

    (1)求抛物线的解析式;
    (2)直线AB的函数解析式为   ,点M的坐标为   ,cos∠ABO=   ;
    连接OC,若过点O的直线交线段AC于点P,将△AOC的面积分成1:2的两部分,则点P的坐标为   ;
    (3)在y轴上找一点Q,使得△AMQ的周长最小.具体作法如图②,作点A关于y轴的对称点A',连接MA'交y轴于点Q,连接AM、AQ,此时△AMQ的周长最小.请求出点Q的坐标;
    (4)在坐标平面内是否存在点N,使以点A、O、C、N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.
    【答案】(1)y=x2+2x;(2)y=x+4,M(-2,-2),cos∠ABO=;(-2,2)或(0,4);(3)点Q(0,-);(4)存在,点N的坐标为(6,6)或(-6,-6)或(-2,6)
    【解析】
    【分析】
    (1)将点A、C的坐标代入抛物线表达式即可求解;
    (2)点A(﹣4,0),OB=OA=4,故点B(0,4),即可求出AB的表达式;OP将△AOC的面积分成1:2的两部分,则AP=AC或AC,即可求解;
    (3)△AMQ的周长=AM+AQ+MQ=AM+A′M最小,即可求解;
    (4)分AC是边、AC是对角线两种情况,分别求解即可.
    【详解】
    解:(1)将点A、C的坐标代入抛物线表达式得:,解得,
    故抛物线的解析式为:y=x2+2x;
    (2)点A(﹣4,0),OB=OA=4,故点B(0,4),
    由点A、B的坐标得,直线AB的表达式为:y=x+4;
    则∠ABO=45°,故cos∠ABO=;
    对于y=x2+2x,函数的对称轴为x=-2,故点M(-2-2);
    OP将△AOC的面积分成1:2的两部分,则AP=AC或AC,,
    则或,即或,解得:yP=2或4,
    故点P(-2,2)或(0,4),
    故答案为:y=x+4;(-2-2);;(-2,2)或(0,4);
    (3)△AMQ的周长=AM+AQ+MQ=AM+A′M最小,
    点A′(4,0),
    设直线A′M的表达式为:y=kx+b,则,解得,
    故直线A′M的表达式为:,
    令x=0,则y=,故点Q(0,);
    (4)存在,理由如下:
    设点N(m,n),而点A、C、O的坐标分别为(﹣4,0)、(2,6)、(0,0),
    ①当AC是边时,
    点A向右平移6个单位向上平移6个单位得到点C,同样点O(N)右平移6个单位向上平移6个单位得到点N(O),
    即0 ± 6=m,0 ± 6=n,解得:m=n=±6,
    故点N(6,6)或(-6,-6);
    ②当AC是对角线时,
    由中点公式得:﹣4+2=m+0,6+0=n+0,
    解得:m=-2,n=6,
    故点N(-2,6);
    综上,点N的坐标为(6,6)或(-6,-6)或(-2,6).
    【点睛】
    本题考查的是二次函数综合运用,涉及到一次函数的性质、平行四边形的性质、图形的平移、面积的计算等,其中第4问要注意分类求解,避免遗漏.
    77.(2020·湖北宜昌?中考真题)菱形的对角线相交于点O,,点G是射线上一个动点,过点G作交射线于点E,以为邻边作矩形.


    (1)如图1,当点F在线段上时,求证:;
    (2)若延长与边交于点H,将沿直线翻折180°得到.
    ①如图2,当点M在上时,求证:四边形为正方形:
    ②如图3,当为定值时,设,k为大于0的常数,当且仅当时,点M在矩形的外部,求m的值.
    【答案】(1)见解析;(2)①见解析;②.
    【解析】
    【分析】
    (1)证明四边形ECFG,DGEF是平行四边形即可得到结论;
    (2)①由折叠得可证明,,再证明 可得GO=EO,再由四边形EOGF为矩形则可证明结论;
    ②由四边形ABCD为菱形以及折叠可得,当且仅当时,M点在矩形EOGF的外部,时,M点在矩形EOGF上,即点M在EF上,设,求得,过点D作于点N,证明求得,在中运用勾股定理列出方程求解即可.
    【详解】
    (1)证明:如图,四边形EOGF为矩形,

    ,,,,

    四边形ECFG,DGEF是平行四边形,
    ,,

    (2)如图,

    证明:由折叠得,
    ,,
    ,,
    四边形ABCD为菱形,






    ,,
    ,点M在GE上,


    四边形EOGF为矩形,
    矩形EOGF为正方形;
    (3)如图,

    四边形ABCD为菱形,






    (m为定值),

    点M始终在固定射线DM上并随k的增大向上运动,
    当且仅当时,M点在矩形EOGF的外部,
    时,M点在矩形EOGF上,即点M在EF上,
    设,
    ,,,
    ,,

    过点D作于点N,
    ,又,






    是直角三角形,



    (负值舍去),


    【点睛】
    本题考查四边形的综合问题,涉及矩形和菱形的性质,勾股定理,锐角三角函数,解方程等知识,综合程度较高,考查学生灵活运用知识的能力.
    78.(2020·广东中考真题)如图,点是反比例函数()图象上一点,过点分别向坐标轴作垂线,垂足为,,反比例函数()的图象经过的中点,与,分别相交于点,.连接并延长交轴于点,点与点关于点对称,连接,.

    (1)填空:_________;
    (2)求的面积;
    (3)求证:四边形为平行四边形.
    【答案】(1)2 (2)3 (3)见解析
    【解析】
    【分析】
    (1)根据题意设点B的坐标为(x,),得出点M的坐标为(,),代入反比例函数(),即可得出k;
    (2)连接,根据反比例函数系数k的性质可得,,可得,根据,可得点到的距离等于点到距离,由此可得出答案;
    (3)设,,可得,,根据,可得,同理,可得,,证明,可得,根据,得出,根据,关于对称,可得,,,可得,再根据,即可证明是平行四边形.
    【详解】
    解:(1)∵点B在上,
    ∴设点B的坐标为(x,),
    ∴OB中点M的坐标为(,),
    ∵点M在反比例函数(),
    ∴k=·=2,
    故答案为:2;
    (2)连接,则,

    ∵,
    ∴,
    ∵,
    ∴点到的距离等于点到距离,
    ∴;
    (3)设,,
    ,,
    又∵,
    ∴,
    同理,
    ∴,,
    ∵,
    ∴,
    ∴,
    ∵,
    ∴,
    ∴,关于对称,
    ∴,
    ∴,
    ∴,
    又∵,
    ∴,
    又∵,
    ∴是平行四边形.
    【点睛】
    本题考查了反比例函数系数的性质,相似三角形的判定和性质,平行四边形的判定,平行线的性质,灵活运用知识点是解题关键.
    79.(2020·四川内江?中考真题)如图,正方形ABCD中,P是对角线AC上的一个动点(不与A、C重合),连结BP,将BP绕点B顺时针旋转到BQ,连结QP交BC于点E,QP延长线与边AD交于点F.
    (1)连结CQ,求证:;
    (2)若,求的值;
    (3)求证:.

    【答案】(1)见解析;(2) ;(3)见解析
    【解析】
    【分析】
    (1)由旋转知△PBQ为等腰直角三角形,得到PB=QB,∠PBQ=90°,进而证明△APB≌△CQB即可;
    (2)设AP=x,则AC=4x,PC=3x,由(1)知CQ=AP=x,又△ABC为等腰直角三角形,所以BC=,PQ=,再证明△BQE∽△BCQ,由此求出BE,进而求出CE:BC的值;
    (3)在CE上截取CG,并使CG=FA,证明△PFA≌△QGC,进而得到PF=QG,然后再证明∠QGE=∠QEG即可得到QG=EQ,进而求解.
    【详解】
    解:∵四边形ABCD为正方形,
    ∴AB=BC,∠ABC=90°,
    ∵BP绕点B顺时针旋转到BQ,
    ∴BP=BQ,∠PBQ=90°,
    ∴∠ABC-∠PBC=∠PBQ-∠PBC,
    ∴∠ABP=∠CBQ,
    在△APB和△CQB中,

    ∴△APB≌△CQB(SAS),
    ∴AP=CQ.
    (2) 设AP=x,则AC=4x,PC=3x,由(1)知CQ=AP=x,
    △ABC为等腰直角三角形,∴BC=,
    在Rt△PCQ中,由勾股定理有:,
    且△PBQ为等腰直角三角形,
    ∴,
    又∠BCQ=∠BAP=45°,∠BQE=45°,
    ∴∠BCQ=∠BQE=45°,且∠CBQ=∠CBQ,
    ∴△BQE∽△BCQ,
    ∴,代入数据:,
    ∴BE=,∴CE=BC-BE=,
    ∴,
    故答案为:.
    (3) 在CE上截取CG,并使CG=FA,如图所示:

    ∵∠FAP=∠GCQ=45°,
    且由(1)知AP=CQ,且截取CG=FA,
    故有△PFA≌△QGC(SAS),
    ∴PF=QG,∠PFA=∠CGQ,
    又∵∠DFP=180°-∠PFA,∠QGE=180°-∠CGQ,
    ∴∠DFP=∠QGE,
    ∵DABC,
    ∴∠DFP=∠CEQ,
    ∴∠QGE=∠CEQ,
    ∴△QGE为等腰三角形,
    ∴GQ=QE,
    故PF=QE.
    【点睛】
    本题考查了正方形的性质、旋转的性质、三角形全等的判定和性质、相似三角形判定和性质的综合,具有一定的综合性,本题第(3)问关键是能想到在CE上截取CG,并使CG=FA这条辅助线.
    80.(2020·甘肃天水?中考真题)性质探究
    如图(1),在等腰三角形中,,则底边与腰的长度之比为_________.

    理解运用
    (1)若顶角为的等腰三角形的周长为,则它的面积为_________;
    (2)如图(2),在四边形中,.在边,上分别取中点,连接.若,,求线段的长.

    类比拓展
    顶角为的等腰三角形的底边与一腰的长度之比为__________(用含的式子表示)
    【答案】性质探究:(或);理解运用:(1);(2);类比拓展:(或).
    【解析】
    【分析】
    性质探究
    作CD⊥AB于D,则∠ADC=∠BDC=90°,由等腰三角形的性质得出AD=BD,∠A=∠B=30°,由直角三角形的性质得出AC=2CD,AD=CD,得出AB=2AD=2CD,即可得出结果;
    理解运用
    (1)同上得出则AC=2CD,AD=CD,由等腰三角形的周长得出4CD+2CD=4+2,解得:CD=1,得出AB=2,由三角形面积公式即可得出结果;
    (2)①由等腰三角形的性质得出∠EFG=∠EGF,∠EGH=∠EHG,得出∠EFG+∠EHG=∠EGF+∠EGH=∠FGH即可;
    ②连接FH,作EP⊥FH于P,由等腰三角形的性质得出PF=PH,由①得:∠EFG+∠EHG=∠FGH=120°,由四边形内角和定理求出∠FEH=120°,由等腰三角形的性质得出∠EFH=30°,由直角三角形的性质得出PE=EF=10,PF=PE=10,得出FH=2PF=20,证明MN是△FGH的中位线,由三角形中位线定理即可得出结果;
    类比拓展
    作AD⊥BC于D,由等腰三角形的性质得出BD=CD,∠BAD=∠BAC=α,由三角函数得出BD=AB×sinα,得出BC=2BD=2AB×sinα,即可得出结果.
    【详解】
    性质探究
    解:作CD⊥AB于D,如图①所示:

    则∠ADC=∠BDC=90°,
    ∵AC=BC,∠ACB=120°,
    ∴AD=BD,∠A=∠B=30°,
    ∴AC=2CD,AD=CD,
    ∴AB=2AD=2CD,
    ∴;
    故答案为:(或);
    理解运用
    (1)解:如图①所示:同上得:AC=2CD,AD=CD,
    ∵AC+BC+AB=4+2,
    ∴4CD+2CD=4+2,
    解得:CD=1,
    ∴AB=2,
    ∴△ABC的面积=AB×CD=×2×1=;
    故答案为:
    (2)①证明:∵EF=EG=EH,
    ∴∠EFG=∠EGF,∠EGH=∠EHG,
    ∴∠EFG+∠EHG=∠EGF+∠EGH=∠FGH;
    ②解:连接FH,作EP⊥FH于P,如图②所示:

    则PF=PH,由①得:∠EFG+∠EHG=∠FGH=120°,
    ∴∠FEH=360°-120°-120°=120°,
    ∵EF=EH,
    ∴∠EFH=30°,
    ∴PE= EF=10,
    ∴PF=PE=10,
    ∴FH=2PF=20,
    ∵点M、N分别是FG、GH的中点,
    ∴MN是△FGH的中位线,
    ∴MN=FH=10;
    类比拓展
    解:如图③所示:作AD⊥BC于D,

    ∵AB=AC,
    ∴BD=CD,∠BAD=∠BAC=α,
    ∵,
    ∴BD=AB×sinα,
    ∴BC=2BD=2AB×sinα,
    ∴;
    故答案为:2sinα(或).
    【点睛】
    本题是四边形综合题目,考查了等腰三角形的性质、直角三角形的性质、三角形中位线定理、四边形内角和定理、解直角三角形等知识;本题综合性强,熟练掌握等腰三角形的性质和含30°角的直角三角形的性质是解题的关键.
    81.(2020·江苏徐州?中考真题)我们知道:如图①,点把线段分成两部分,如果.那么称点为线段的黄金分割点.它们的比值为.

    (1)在图①中,若,则的长为_____;
    (2)如图②,用边长为的正方形纸片进行如下操作:对折正方形得折痕,连接,将折叠到上,点对应点,得折痕.试说明是的黄金分割点;
    (3)如图③,小明进一步探究:在边长为的正方形的边上任取点,连接,作,交于点,延长、交于点.他发现当与满足某种关系时、恰好分别是、的黄金分割点.请猜想小明的发现,并说明理由.
    【答案】(1);(2)见解析;(3)当PB=BC时,、恰好分别是、的黄金分割点,理由见解析
    【解析】
    【分析】
    (1)由黄金比值直接计算即可;
    (2)如图,连接GE,设BG=x,则AG=20-x,易证得四边形EFCD是矩形,可求得CE,由折叠知GH=BG=x,CH=BC=20,进而EH=CE-CH,在Rt△GAE和Rt△GHE中由勾股定理得关于x的方程,解之即可证得结论;
    (3)当PB=BC时,证得Rt△PBF≌Rt△CBF≌Rt△BAE,则有BF=AE,设BF=x,则AF=a-x,由AE∥PB得AE:PB=AF:BF,解得x,即可证得结论.
    【详解】
    (1)AB=×20=()(cm),
    故答案为:;
    (2)如图,连接GE,设BG=x,则GA=20-x,
    ∵四边形ABCD是正方形,
    ∴∠A=∠B=∠D=90º,
    由折叠性质得:CH=BC=20,GE=BG=x,∠GHC=∠B=90º,AE=ED=10,
    在Rt△CDE中,CE=,
    ∴EH=,
    在Rt△GHE中,
    在Rt△GAE中,,
    ∴,
    解得:x=,
    即,
    ∴是的黄金分割点;

    (3)当PB=BC时,、恰好分别是、的黄金分割点.
    理由:∵,
    ∴∠BCF+∠CBE=90º,又∠CBE+∠ABE=90º,
    ∴∠ABE=∠BCF,
    ∵∠A=∠ABC=90º,AB=BC,
    ∴△BAE≌△CBF(ASA),
    ∴AE=BF,
    设AE=BF=x,则AF=a-x,
    ∵AD∥BC即AE∥PB,
    ∴即,
    ∴,
    解得:或(舍去),
    即BF=AE=,
    ∴,
    ∴、分别是、的黄金分割点.
    【点睛】
    本题考查了正方形的性质、折叠性质、勾股定理、全等三角形的判定与性质、平行线分线段成比例、解一元二次方程等知识,解答的关键是认真审题,找出相关信息的关联点,确定解题思路,进而推理、探究、发现和计算.
    82.(2020·湖北省直辖县级单位?中考真题)实践操作:第一步:如图1,将矩形纸片沿过点D的直线折叠,使点A落在上的点处,得到折痕,然后把纸片展平.第二步:如图2,将图1中的矩形纸片沿过点E的直线折叠,点C恰好落在上的点处,点B落在点处,得到折痕,交于点M,交于点N,再把纸片展平.

    问题解决:
    (1)如图1,填空:四边形的形状是_____________________;
    (2)如图2,线段与是否相等?若相等,请给出证明;若不等,请说明理由;
    (3)如图2,若,求的值.
    【答案】(1)正方形;(2),见解析;(3)
    【解析】
    【分析】
    (1)有一组邻边相等且一个角为直角的平行四边形是正方形;
    (2)连接,由(1)问的结论可知,,又因为矩形纸片沿过点E的直线折叠,可知折叠前后对应角以及对应边相等,有,,,可以证明和全等,得到,从而有;
    (3)由,有;由折叠知,,可以计算出;用勾股定理计算出DF的长度,再证明得出等量关系,从而得到的值.
    【详解】
    (1)解:∵ABCD是平行四边形,
    ∴,
    ∴四边形是平行四边形
    ∵矩形纸片沿过点D的直线折叠,使点A落在上的点处



    ∴四边形的形状是正方形
    故最后答案为:四边形的形状是正方形;
    (2)
    理由如下:如图,连接,由(1)知:
    ∵四边形是矩形,

    由折叠知:

    又,




    (3)∵,∴
    由折叠知:,∴


    设,则
    在中,由勾股定理得:
    解得:,即
    如图,延长交于点G,则



    ∵,∴

    【点睛】
    (1)本问主要考查了正方形的定义,即有一组邻边相等且一个角为直角的平行四边形是正方形,其中明确折叠前后对应边、对应角相等是解题的关键;
    (2)本问利用了正方形的性质以及折叠前后对应边、对应角相等来证明三角形全等,再根据角相等则边相等即可做题,其中知道角相等则边相等的思想是解题的关键;
    (3)本问考查了全等三角形、相似三角形的性质、角相等则正切值相等以及勾股定理的应用,其中知道三角形相似则对应边成比例是解题的关键.
    83.(2020·陕西中考真题)问题提出
    (1)如图1,在Rt△ABC中,∠ACB=90°,AC>BC,∠ACB的平分线交AB于点D.过点D分别作DE⊥AC,DF⊥BC.垂足分别为E,F,则图1中与线段CE相等的线段是_____.
    问题探究
    (2)如图2,AB是半圆O的直径,AB=8.P是上一点,且,连接AP,BP.∠APB的平分线交AB于点C,过点C分别作CE⊥AP,CF⊥BP,垂足分别为E,F,求线段CF的长.
    问题解决
    (3)如图3,是某公园内“少儿活动中心”的设计示意图.已知⊙O的直径AB=70m,点C在⊙O上,且CA=CB.P为AB上一点,连接CP并延长,交⊙O于点D.连接AD,BD.过点P分别作PE⊥AD,PF⊥BD,重足分别为E,F.按设计要求,四边形PEDF内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP的长为x(m),阴影部分的面积为y(m2).
    ①求y与x之间的函数关系式;
    ②按照“少儿活动中心”的设计要求,发现当AP的长度为30m时,整体布局比较合理.试求当AP=30m时.室内活动区(四边形PEDF)的面积.

    【答案】(1)CF、DE、DF;(2)CF=6﹣2;(3)① y=﹣x2+35x+1225;② 576m2.
    【解析】
    【分析】
    (1)证明四边形CEDF是正方形,即可得出结果;
    (2)连接OP,由AB是半圆O的直径,,得出∠APB=90°,∠AOP=60°,则∠ABP=30°,同(1)得四边形PECF是正方形,得PF=CF,在Rt△APB中,PB=AB•cos∠ABP=4 ,在Rt△CFB中,BF==CF,推出PB=CF+BF,即可得出结果;
    (3)① 同(1)得四边形DEPF是正方形,得出PE=PF,∠APE+∠BPF=90°,∠PEA=∠PFB=90°,将△APE绕点P逆时针旋转90°,得到△A′PF,PA′=PA,则A′、F、B三点共线,∠APE=∠A′PF,证∠A′PB=90°,得出S△PAE+S△PBF=S△PA′B= PA′•PB=x(70﹣x),在Rt△ACB中,AC=BC=35 ,S△ACB=AC2=1225,由y=S△PA′B+S△ACB,即可得出结果;
    ② 当AP=30时,A′P=30,PB=40,在Rt△A′PB中,由勾股定理得A′B= ==50,由S△A′PB=A′B•PF=PB•A′P,求PF,即可得出结果.
    【详解】
    解:(1)∵∠ACB=90°,DE⊥AC,DF⊥BC,
    ∴四边形CEDF是矩形,
    ∵CD平分∠ACB,DE⊥AC,DF⊥BC,
    ∴DE=DF,
    ∴四边形CEDF是正方形,
    ∴CE=CF=DE=DF,
    故答案为:CF、DE、DF;
    (2)连接OP,如图2所示:
    ∵AB是半圆O的直径,,
    ∴∠APB=90°,∠AOP=×180°=60°,
    ∴∠ABP=30°,
    同(1)得:四边形PECF是正方形,
    ∴PF=CF,
    在Rt△APB中,PB=AB•cos∠ABP=8×cos30°=8× =4 ,
    在Rt△CFB中BF== = =CF,
    ∵PB=PF+BF,
    ∴PB=CF+BF,
    即:4=CF+CF,
    解得:CF=6﹣2;

    (3)①∵AB为⊙O的直径,
    ∴∠ACB=∠ADB=90°,
    ∵CA=CB,
    ∴∠ADC=∠BDC,
    同(1)得:四边形DEPF是正方形,
    ∴PE=PF,∠APE+∠BPF=90°,∠PEA=∠PFB=90°,
    ∴将△APE绕点P逆时针旋转90°,得到△A′PF,PA′=PA,如图3所示:
    则A′、F、B三点共线,∠APE=∠A′PF,
    ∴∠A′PF+∠BPF=90°,即∠A′PB=90°,
    ∴S△PAE+S△PBF=S△PA′B=PA′•PB=x(70﹣x),
    在Rt△ACB中,AC=BC=AB=×70=35,
    ∴S△ACB=AC2=×(35)2=1225,
    ∴y=S△PA′B+S△ACB=x(70﹣x)+1225=﹣x2+35x+1225;
    ②当AP=30时,A′P=30,PB=AB﹣AP=70﹣30=40,
    在Rt△A′PB中,由勾股定理得:A′B= ==50,
    ∵S△A′PB=A′B•PF=PB•A′P,
    ∴×50×PF=×40×30,
    解得:PF=24,
    ∴S四边形PEDF=PF2=242=576(m2),
    ∴当AP=30m时.室内活动区(四边形PEDF)的面积为576m2.

    【点睛】
    本题是关于圆的综合题,主要考查了圆周角定理、勾股定理、矩形的判定、正方形的判定与性质、角平分线的性质、旋转的性质、三角函数定义、三角形面积与正方形面积的计算等知识;熟练掌握圆周角定理和正方形的判定与性质是解题的关键.
    84.(2020·湖北中考真题)如图1,已知,,点D在上,连接并延长交于点F.
    (1)猜想:线段与的数量关系为_____;
    (2)探究:若将图1的绕点B顺时针方向旋转,当小于时,得到图2,连接并延长交于点F,则(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由;
    (3)拓展:图1中,过点E作,垂足为点G.当的大小发生变化,其它条件不变时,若,,直接写出的长.

    【答案】(1)AF=EF;(2)成立,理由见解析;(3)12
    【解析】
    【分析】

    (1) 延长DF到G点,并使FG=DC,连接GE,证明△ACF△EDG,进而得到△GEF为等腰三角形,即可证明AF=GE=EF;
    (2)证明原理同(1),延长DF到G点,并使FG=DC,连接GE,证明△ACF△EDG,进而得到△GEF为等腰三角形,即可证明AF=GE=EF;
    (3)补充完整图后证明四边形AEGC为矩形,进而得到∠ABC=∠ABE=∠EBG=60°即可求解.
    【详解】

    解:(1)延长DF到G点,并使FG=DC,连接GE,如下图所示

    ∵,
    ∴DE=AC,BD=BC,
    ∴∠CDB=∠DCB,且∠CDB=∠ADF,
    ∴∠ADF=∠DCB,
    ∵∠ACB=90°,
    ∴∠ACD+∠DCB=90°,
    ∵∠EDB=90°,
    ∴∠ADF+∠FDE=90°,
    ∴∠ACD=∠FDE,
    又延长DF使得FG=DC,
    ∴FG+DF=DC+DF,
    ∴DG=CF,
    在△ACF和△EDG中,

    ∴△ACF△EDG(SAS),
    ∴GE=AF,∠G=∠AFC,
    又∠AFC=∠GFE,
    ∴∠G=∠GFE
    ∴GE=EF
    ∴AF=EF,
    故AF与EF的数量关系为:AF=EF.
    故答案为:AF=EF;
    (2)仍旧成立,理由如下:
    延长DF到G点,并使FG=DC,连接GE,如下图所示
    设BD延长线DM交AE于M点,

    ∵,
    ∴DE=AC,BD=BC,
    ∴∠CDB=∠DCB,且∠CDB=∠MDF,
    ∴∠MDF=∠DCB,
    ∵∠ACB=90°,
    ∴∠ACD+∠DCB=90°,
    ∵∠EDB=90°,
    ∴∠MDF+∠FDE=90°,
    ∴∠ACD=∠FDE,
    又延长DF使得FG=DC,
    ∴FG+DF=DC+DF,
    ∴DG=CF,
    在△ACF和△EDG中,

    ∴△ACF△EDG(SAS),
    ∴GE=AF,∠G=∠AFC,
    又∠AFC=∠GFE,
    ∴∠G=∠GFE
    ∴GE=EF,
    ∴AF=EF,
    故AF与EF的数量关系为:AF=EF.
    故答案为:AF=EF;
    (3)如下图所示:

    ∵BA=BE,
    ∴∠BAE=∠BEA,
    ∵∠BAE=∠EBG,
    ∴∠BEA=∠EBG,
    ∴AECG,
    ∴∠AEG+∠G=180°,
    ∴∠AEG=90°,
    ∴∠ACG=∠G=∠AEG=90°,
    ∴四边形AEGC为矩形,
    ∴AC=EG,且AB=BE,
    ∴Rt△ACBRt△EGB(HL),
    ∴BG=BC=6,∠ABC=∠EBG,
    又∵ED=AC=EG,且EB=EB,
    ∴Rt△EDBRt△EGB(HL),
    ∴DB=GB=6,∠EBG=∠ABE,
    ∴∠ABC=∠ABE=∠EBG=60°,
    ∴∠BAC=30°,
    ∴在Rt△ABC中由30°所对的直角边等于斜边的一半可知:

    故答案为:.
    【点睛】

    本题属于四边形的综合题,考查了三角形全等的性质和判定,矩形的性质和判定,本题的关键是延长DF到G点并使FG=DC,进而构造全等,本题难度稍大,需要作出合适的辅助线.
    85.(2020·山西中考真题)综合与实践
    问题情境:
    如图①,点为正方形内一点,,将绕点按顺时针方向旋转,得到(点的对应点为点),延长交于点,连接.
    猜想证明:

    (1)试判断四边形的形状,并说明理由;
    (2)如图②,若,请猜想线段与的数量关系并加以证明;
    解决问题:
    (3)如图①,若,,请直接写出的长.
    【答案】(1)四边形是正方形,理由详见解析;(2),证明详见解析;(3).
    【解析】
    【分析】

    (1)由旋转可知:,,再说明可得四边形是矩形,再结合即可证明;
    (2)过点作,垂足为,先根据等腰三角形的性质得到,再证可得,再结合、即可解答;
    (3)过E作EG⊥AD,先说明∠1=∠2,再设EF=x、则BE=FE'=EF=BE'=x、CE'=AE=3+x,再在Rt△AEB中运用勾股定理求得x,进一步求得BE和AE的长,然后运用三角函数和线段的和差求得DG和EG的长,最后在Rt△DEG中运用勾股定理解答即可.
    【详解】

    解:(1)四边形是正方形
    理由:由旋转可知:,,
    又,

    四边形是矩形.
    ∵.
    四边形是正方形;
    (2).
    证明:如图,过点作,垂足为,

    则,


    四边形是正方形,
    ,.







    ∵,


    (3)如图:过E作EG⊥AD

    ∴GE//AB
    ∴∠1=∠2
    设EF=x,则BE=FE'=EF=BE'=x,CE'=AE=3+x
    在Rt△AEB中,BE=x,AE=x+3,AB=15
    ∴AB2=BE2+AE2,即152=x2+(x+3)2,解得x=-12(舍),x=9
    ∴BE=9,AE=12
    ∴sin∠1= ,cos∠1=
    ∴sin∠2= ,cos∠2=
    ∴AG=7.2,GE=9.6
    ∴DG=15-7.2=7.8
    ∴DE=.
    【点睛】

    本题考查了正方形的性质、旋转变换、勾股定理、解三角形等知识,综合应用所学知识是解答本题的关键.
    86.(2020·黑龙江穆棱?朝鲜族学校中考真题)如图,在平面直角坐标系中,四边形OABC的边OC在x轴上,OA在y轴上.O为坐标原点,AB//OC,线段OA,AB的长分别是方程x2-9x+20=0的两个根(OA

    相关试卷

    初中数学中考复习 专题66概率(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版):

    这是一份初中数学中考复习 专题66概率(2)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版),共77页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    初中数学中考复习 专题50圆(4)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版):

    这是一份初中数学中考复习 专题50圆(4)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版),共130页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    初中数学中考复习 专题46四边形(5)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版):

    这是一份初中数学中考复习 专题46四边形(5)-2020年全国中考数学真题分项汇编(第02期,全国通用)(解析版),共248页。试卷主要包含了解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map