初中数学中考复习 专题46:第9章函数的综合问题之二次函数综合题-备战2021中考数学解题方法系统训练(全国通用)(原卷版)
展开
这是一份初中数学中考复习 专题46:第9章函数的综合问题之二次函数综合题-备战2021中考数学解题方法系统训练(全国通用)(原卷版),共15页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
46第9章函数的综合问题之二次函数综合题 一、单选题1.已知抛物线y=x2+(2m﹣6)x+m2﹣3与y轴交于点A,与直线x=4交于点B,当x2时,y值随x值的增大而增大.记抛物线在线段AB下方的部分为G(包含A、B两点),M为G上任意一点,设M的纵坐标为t,若,则m的取值范围是( )A.m≥ B.≤m≤3 C.m≥3 D.1≤m≤32.如图,已知抛物线的对称轴为直线.给出下列结论:①; ②; ③; ④.其中,正确的结论有( )A.1个 B.2个 C.3个 D.4个3.如图是抛物线,其顶点为,且与轴的个交点在点和之间,则下列结论正确的个数是( )个①若抛物线与轴的另一个交点为,则;②;③若时,随的增大而增大,则.A. B. C. D.4.二次函数的部分图象如图所示,则下列说法:①abc>0;② 2a+b=0;③ a(x+1)(x-3)=0;④ 2c-3b=0.其中正确的个数为( )A.1 B.2 C.3 D.45.我们定义一种新函数:形如(a≠0,b2﹣4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2﹣2x﹣3|的图象(如图所示),并写出下列五个结论:其中正确结论的个数是( )①图象与坐标轴的交点为(﹣1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x=1;③当﹣1≤x≤1或x≥3时,函数值y随x值的增大而增大;④当x=﹣1或x=3时,函数的最小值是0;⑤当x=1时,函数的最大值是4,A.4 B.3 C.2 D.16.如图,抛物线与x轴正半轴交于A,B两点,与y轴负半轴交于点C.若点,则下列结论中:①;②;③与是抛物线上两点,若,则;④若抛物线的对称轴是直线,m为任意实数,则;⑤若,则,正确的个数是( )A.5 B.4 C.3 D.27.已知抛物线,其中m<n,若a,b是方程的两根,且a<b,则当时,mn的值( )A.小于零B.等于零C.大于零D.与零的大小关系无法确定8.对于一个函数,如果它的自变量x与函数值满足:当-1≤x≤1时,-1≤y≤1,则称这个函数为“闭函数”.例如:y=x,y=x均是“闭函数”.已知是“闭函数”且抛物线经过点A(1,-1)和点B(-1,1),则的取值范围是( )A. B.或C. D.或9.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①a+b+c>0,②方程ax2+bx+c=0两根之和大于零,③y随x的增大而增大,④一次函数y=x+bc的图象一定不过第二象限,其中正确的个数是( )A.4个 B.3个 C.2个 D.1个10.关于二次函数的三个结论:①对任意实数m,都有与对应的函数值相等;②若3≤x≤4,对应的y的整数值有4个,则或;③若抛物线与x轴交于不同两点A,B,且AB≤6,则或.其中正确的结论是( )A.①② B.①③ C.②③ D.①②③ 二、填空题11.已知抛物线与轴交于点、,与轴交于点,则能使为等腰三角形的抛物线的条数是________.12.如果抛物线上有两点A,B关于原点对称,我们则称它为“舒心抛物线”.(1)请判断抛物线_______(是或不是)“舒心抛物线”.(2)抛物线 是“舒心抛物线”与y轴交于点C,与x轴交于,若,则b=____________13.抛物线y=ax2+bx+c (a、b、c为常数)经过点A (-1,0)、B(m,0)、C(-2,n)(1<m<3,n<0,下列结论:①abc>0;②3a+c<0,③若P (n,t)为抛物线上任一点,则()²a+()b≥an2+bn,④当a=-1时,则b的取值范围为0<b<2. 其中正确结论的序号为___________.14.如图,抛物线与x轴交于点A、B,顶点为C,对称轴为直线,给出下列结论:①;②若点C的坐标为,则的面积可以等于2;③是抛物线上两点,若,则;④若抛物线经过点,则方程的两根为,3其中正确结论的序号为_______.15.研究抛物线的性质时,将一个直角三角板的直角顶点置于平面直角坐标系的原点O,两直角边与该抛物线交于A,B两点(如图),将三角板绕点O旋转任意角度时发现,交点A,B所连线段总经过一个固定的点,则该定点的坐标是_____. 三、解答题16.如图,抛物线y=ax2+bx+c(a<0)与x轴交于点A(﹣2,0)和点B,与y轴交于点C,对称轴为直线x=;连接AC,BC,S△ABC=15.(1)求抛物线的解析式;(2)①点M是x轴上方抛物线上一点,且横坐标为m,过点M作MN⊥x轴,垂足为点N.线段MN有一点H(点H与点M,N不重合),且∠HBA+∠MAB=90°,求HN的长;②在①的条件下,若MH=2NH,直接写出m的值;(3)在(2)的条件下,设d=,直搂写出d关于m的函数解析式,并写出m的取值范围.17.若抛物线L:y=ax2+bx+c(a,b,c是常数,a≠0)与直线l:y=ax+b满足a2+b2=2a(2c﹣b),则称此直线l与该抛物线L具有“支干”关系.此时,直线l叫做抛物线L的“支线”,抛物线L叫做直线l的“干线”.(1)若直线y=x﹣2与抛物线y=ax2+bx+c具有“支干”关系,求“干线”的最小值;(2)若抛物线y=x2+bx+c的“支线”与y=﹣的图象只有一个交点,求反比例函数的解析式; (3)已知“干线”y=ax2+bx+c与它的“支线”交于点P,与它的“支线”的平行线l′:y=ax+4a+b交于点A,B,记△ABP得面积为S,试问:的值是否为定值?若是,请求出这个定值;若不是,请说明理由.18.如图,抛物线过A(4,0),B(1,3)两点,连结AB.(1)分别写出抛物线的解析式 ,直线AB的解析式 ;(2)点P在抛物线上,且位于第四象限,当△ABP的面积为6时,求出点P的坐标;(3)若点P是抛物线上的一个动点(不与A、B重合),其横坐标为,当△ABP的面积S随的增大而增大时,直接写出的取值范围.19.综合与探究如图,在平面直角坐标系中,O是坐标原点,抛物线的顶点为A,且与y轴的交点为B,过点B作轴交抛物线于点,在CB延长线上取点D,使,连接OC,OD,AC和AD.(1)求抛物线的解析式;(2)试判断四边形ADOC的形状,并说明理由;(3)试探究在抛物线上是否存在点P,使得.若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.20.如图,二次函数的图象与x轴、y轴分别交于点A(-1,0)和点B(0,2),图象的对称轴交x轴于点C,一次函数的图象经过点B,C,与二次函数图象的另一个交点为点D.(1)求二次函数的解析式和一次函数的解析式;(2)求点D的坐标;(3)结合图象,请直接写出 时,x的取值范围:_____.21.平面直角坐标系中,二次函数的图象与轴交于点和,交轴于点.(1)求二次函数的解析式;(2)将点向右平移个单位,再次落在二次函数图象上,求的值;(3)对于这个二次函数,若自变量的值增加4时,对应的函数值增大,求满足题意的自变量的取值范围.22.已知抛物线与轴交于点,且.(1)求抛物线的解析式及顶点的坐标;(2)若,均在该抛物线上,且,求点横坐标的取值范围;(3)点为抛物线在直线下方图象上的一动点,当面积最大时,求点的坐标.23.如图,直线交轴于点,交轴于点B,抛物线的顶点为,且经过点.(1)求该抛物线所对应的函数表达式;(2)点是抛物线上的点,是以为直角边的直角三角形,请直接写出点的坐标.24.如图,已知二次函数的图象与轴的两个交点为A(4,0)与点C,与y轴交于点B.(1)求此二次函数关系式和点C的坐标; (2)请你直接写出△ABC的面积: (3)在轴上是否存在点P,使得△PAB是等腰三角形?若存在,请你直接写出点P的坐标;若不存在,请说明理由.25.如图,二次函数y=-x2+bx的图像与x轴负半轴交于点A,平行于x轴的直线l与该抛物线交于B、C两点(点B位于点C左侧)与抛物线对称轴交于点D(-3,5). (1)求b的值;(2)设P、Q是x轴上的点(点P位于点Q左侧),四边形PBCQ为平行四边形.过点P、Q分别作x轴的垂线,与抛物线交于点P’(x1,y1)、Q’(x2,y2)若|y1-y2|=4求x1,x2的值.26.如图,二次函数图象与x轴交于点A、B,与y轴交于点C,抛物线的顶点坐标是(2,9),且经过点D(3,8).(1)求抛物线的函数关系式;(2)在抛物线的对称轴上是否存在一点M,使得BM+DM最短?若存在,求点M的坐标;若不存在,请说明理由;(3)连接AC、CD、DB,求四边形ABDC的面积.27.已知,点,抛物线经过点,且与直线交于点,与轴交于点(异于原点).(1)填空:用含的代数式表示______;(2)若是直角三角形,求的值;(3)点是抛物线的顶点,连接与交于点,当点是三等分点时,求的值.28.如图,直线交轴于点,交轴于点,抛物线经过点,点,且交轴于另一上点.(1)直接写出点,点,点的坐标及抛物线的解析式;(2)在直线上方的抛物线上有一点,求三角形面积的最大值及此时点的坐标;(3)将线段绕轴上的动点顺时针旋转90°得到线段,若线段与抛物线只有一个公共点,请结合函数图象,求的取值范围(直接写出结果即可).29.如图,已知抛物线与轴相交于,两点(点在点右侧),与轴交于点.(1)求点,,的坐标;(2)如图1,若点是抛物线上,之间的一个动点(不与,重合),连接,,则是否存在一点, 使的面积最大?若存在, 求出的最大面积; 若不存在,请说明理由;(3)如图,若是抛物线上任意一点,过点作轴的平行线,交直线于点,当时,求点的坐标30.如图,抛物线y=﹣(x﹣3m)(其中m>0)与x轴分别交于A、B两点(A在B的右侧),与y轴交于点C;(1)点B的坐标为 ,点A的坐标为 (用含m的代数式表示),点C的坐标为 (用含m的代数式表示);(2)若点P为直线AC上的一点,且点P在第二象限,满足OP2=PC•PA,求tan∠APO的值及用含m的代数式表示点P的坐标;(3)在(2)的情况下,线段OP与抛物线相交于点Q,若点Q恰好为OP的中点,此时对于在抛物线上且介于点C与顶点之间(含点C与顶点)的任意一点M(x0,y0)总能使不等式n≤及不等式2n﹣≥﹣4x02+x0+恒成立,求n的取值范围.31.如图,在坐标系中,△ABC是等腰直角三角形,∠BAC = 90°,A(1,0),B(0,2).抛物线的图象过C点,交y轴于点E.(1)求抛物线的解析式;(2)在x轴上是否存在点P使得△BPC的周长最小,若存在,请求出点P坐标,若不存在,请说明理由;(3)直线BC解析式为,若平移该抛物线的对称轴所在直线l,当l移动到何处时,恰好将△ABC的面积分为相等的两部分?
32.如图,将一块三角板的直角边置于轴正半轴上,点落在反比例函数的图像上,若,,,与反比例函数的图像交于点.(1)如图1,当时,求的值;(2)将绕点逆时针旋转得到,如图2,使点落在轴上的点处,判断点是否在反比例函数的图像上,请说明理由.33.已知二次函数,其图象与轴的一个交点为,与轴交于点,且对称轴为直线,过点作直线.(1)求二次函数和直线的表达式;
(2)利用图象求不等式的解集;(3)点是函数的图象上位于第四象限内的一动点,连接,①若面积最大时,求点的坐标及面积的最大值;②在轴上是否存在一点,使得以为顶点的四边形是平行四边形?如果存在,请直接写出点的坐标;如果不存在,请说明理由.34.已知抛物线(为正整数,且)与轴的交点为和,,当时,第条抛物线与轴的交点为和,其他依此类推.(1)求,的值及抛物线的解析式.(2)抛物线的顶点的坐标为(_____,______);依此类推,第条抛物线的顶点的坐标为(_____,_____);所有抛物线的顶点坐标满足的函数关系式是_______.(3)探究以下结论:①是否存在抛物线,使得为等腰直角三角形?若存在,请求出抛物线的解析式;若不存在,请说明理由.②若直线与抛物线分别交于点,,,,则线段,,,的长有何规律?请用含有的代数式表示.35.如图①,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A和点B.(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为线段OA上一个动点,过点M垂直于x轴的直线与直线AB和抛物线分别交于点P和点N,若以B,P,N为顶点的三角形是等腰直角三角形,求点M的坐标;(3)如图②,点M′(0,k)在射线BO上自由运动,过点M′垂直于y轴的直线与直线AB交于点Q,与y轴右侧的抛物线交于点N′,若三个点M′,Q,N′中恰有一点是其它两点所连线段的中点(三点重合除外),则称M′,Q,N′三点为“和谐点”.请直接写出使得M′,Q,N′三点成为“和谐点”的k的值.
相关试卷
这是一份初中数学中考复习 专题50:第10章规律问题之坐标变化类-备战2021中考数学解题方法系统训练(全国通用)(原卷版),共9页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份初中数学中考复习 专题47:第9章函数的综合问题之多函数综合题-备战2021中考数学解题方法系统训练(全国通用)(解析版),共69页。试卷主要包含了单选题,四象限知k<0;,解答题等内容,欢迎下载使用。
这是一份初中数学中考复习 专题46:第9章函数的综合问题之二次函数综合题-备战2021中考数学解题方法系统训练(全国通用)(解析版),共70页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。