初中数学人教版八年级下册18.1.2 平行四边形的判定优质ppt课件
展开18.1.2 平行四边形的判定
第1课时 平行四边形的判定(1)
一、新课导入
1.导入课题
我们知道,平行四边形的对边相等,对角相等,对角线互相平分.反过来,对边相等或对角相等或对角线互相平分的四边形是不是平行四边形呢?下面我们一起来探究这个问题.
2.学习目标
(1)知道平行四边形的四种判定方法及推理格式.
(2)能用这些判定方法证明一个四边形是平行四边形.
3.学习重、难点
重点:平行四边形的判定的归纳与论证.
难点:平行四边形的判定的应用及规范表述.
二、分层学习
1.自学指导
(1)自学内容:P45内容.
(2)自学时间:8分钟.
(3)自学方法:写出平行四边形的性质,然后说出它的逆命题,判断逆命题是否是真命题,并验证.
(4)自学参考提纲:
①平行四边形的定义:两组对边啊分别平行的四边形是平行四边形.
如图:用几何语言表示为:
∵AB ∥ CD,AD ∥ BC,
∴四边形ABCD是平行四边形.
②两组对边分别相等的四边形是平行四边形.如图:用几何语言表示为:
∵AB = CD,AD = BC,
∴四边形ABCD是平行四边形.
③两组对角分别相等的四边形是平行四边形.如图:用几何语言表示为:
∵∠BAD = ∠BCD,∠ABC = ∠ADC,
∴四边形ABCD是平行四边形.
④两条对角线互相平分的四边形是平行四边形.如图:用几何语言表示为:
∵OA = OC,OB = OD,
∴四边形ABCD是平行四边形.
⑤分别用定义去证明②、③的正确性.
⑥平行四边形判定定理与相应的性质定理互为逆定理.
2.自学:学生可结合自学指导自主学习.
3.助学
(1)师助生:
①明了学情:了解学生是否能正确地写出平行四边形性质的逆命题并论证逆命题是否正确.
②差异指导:指导写出性质的逆命题;及验证逆命题的正确性.
(2)生助生:学生相互交流,帮助研讨.
4.强化
(1)平行四边形的判定定理:①;②;③;④.
(2)平行四边形判定定理与相应性质定理的关系:互为逆定理.
(3)练习:P47练习第1题.
1.自学指导
(1)自学内容:P46例3.
(2)自学时间:5分钟.
(3)自学方法:阅读例题条件和证明过程,清楚证明的思路及每步依据.
(4)自学参考提纲:
①在例题的证明过程中的三个结论后面注上理由.
②思考例3的另外的证明方法并写出来同桌交流.
③完成P47练习第2题.
2.自学:学生结合自学指导自主学习.
3.助学
(1)师助生:
①明了学情:关注学生是否理解了例3证明四边形BFDE是平行四边形的方法,是否想好了另外方法.
②差异指导:四种方法逐一尝试;比较不同方法的优劣.
(2)生助生:学生相互交流,帮助研讨.
4.强化
(1)归纳平行四边形的判定:
①两组对边分别平行的四边形是平行四边形.
②两组对边分别相等的四边形是平行四边形.
③对角线互相平分的四边形是平行四边形.
④两组对角分别相等的四边形是平行四边形.
(2)讨论怎样根据条件选择合适的判定方法证明一个四边形为平行四边形.
三、评价
1.学生自我评价(围绕三维目标):各小组代表介绍自己的学习方法、收获及困惑.
2.教师对学生的评价:
(1)表现性评价:对学生在课堂学习中的态度、方法、收效和不足之处进行点评.
(2)纸笔评价:课堂评价检测.
3.教师自我评价(教学反思).
本节课通过学生的观察、实验、猜想、验证、推理等活动过程,让学生感受数学思考过程的条理性及解决问题策略的多样性,发展学生的动手操作能力、推理能力及数学应用意识.另外,教师应要求学生将五种判定的数学语言和符号语言都按格式书写出来,这样有利于学生数学习惯的培养.
(时间:12分钟满分:100分)
一、基础巩固(60分)
一、基础巩固(45分)
1.(10分)下列条件能判定四边形ABCD是平行四边形的条件是(A)
A.AB∥CD,AD∥BC B.∠A=∠B,∠C=∠D
C.AB=BC,AD=DC D.AC=BD
2.(10分)四边形ABCD中,已知AB∥CD,再添加一个条件AB=CD,使四边形ABCD是平行四边形.
3.(10分)如图,△ABC平移后得到△DEF,则图中的平行四边形分别有 ACFD、 ABED、 BCFE .
4.(15分)如图,在 ABCD中,E、F是对角线BD上的点,且BE=DF,求证:四边形AECF是平行四边形.
证明:如图,连接AC交BD于O.
由平行四边形的性质可得:OA=OC,OB=OD.
又∵BE=DF,∴OB-BE=OD-DF,∴OE=OF.
又∵OA=OC,∴四边形AECF是平行四边形.
二、综合应用(35分)
5(15分).如图, ABCD中,线段EF、GH分别在AB、CD上运动,在运动过程中总是保持EF=GH.
(1)试猜想四边形EFGH的形状,并说明理由.
(2)若EF=13AB,且,则 8 .
解:(1)四边形EFGH为平行四边形.
由平行四边形的性质得:AB∥CD,即EF∥GH,
又∵EF=GH,∴四边形EFGH为平行四边形.
6.(20分)如图,在ABCD中,BE平分∠ABC,交AD于点E,DF平分∠ADC,交BC于点F,那么四边形BFDE是平行四边形吗?为什么?
分析:先根据平行四边形两组对角分别相等可得∠ABC=∠CDA,∠A=∠C,然后根据角平分线的定义和三角形的内角和得出四边形BFDE的两组对角分别相等,即可证明四边形BFDE是平行四边形.解:四边形BFDE是平行四边形.
理由:在ABCD中,∠ABC=∠CDA,∠A=∠C,
∵BE平分∠ABC,DF平分∠ADC,
∴∠ABE=∠CBE=12∠ABC,∠CDF=∠ADF=12∠CDA,
∴∠ABE=∠CBE=∠CDF=∠ADF,
∵∠DFB=180°-∠CFD=∠C+∠CDF,∠BED=180°-∠AEB=∠ABE+∠A,
∴∠DFB=∠BED,
∴四边形BFDE是平行四边形.
三、拓展延伸(20分)
7.如图,分别以△ABC的三边为边长,在BC的同侧作等边三角形ABD,等边三角形BCE,等边三角形ACF,连接DE,EF.求证:四边形ADEF是平行四边形.
证明:∵△BCE、△ACF、△ABD是等边三角形,
∴AB=AD,AC=CF,BC=CE,∠BCE=∠ACF,
∴∠BCE-∠ACE=∠ACF-∠ACE,即∠BCA=∠ECF,
在△BCA和△ECF中,BC=EC,∠BCA=∠ECF,AC=FC,
∴△BCA≌△ECF(SAS),∴AB=EF,
∵AB=AD,∴AD=EF,同理DE=AF,
∴四边形ADEF是平行四边形.
初中数学人教版八年级下册18.1.2 平行四边形的判定备课课件ppt: 这是一份初中数学人教版八年级下册18.1.2 平行四边形的判定备课课件ppt,文件包含第1课时平行四边形的判定1pptx、第1课时平行四边形的判定1docx、平行四边形判定1学习单docx、第1课时平行四边形的判定1导学案doc、1实操对边相等的四边形mp4、2实操对角相等的四边形mp4、3实操对角线相互平分的四边形mp4等7份课件配套教学资源,其中PPT共37页, 欢迎下载使用。
数学八年级下册18.1.2 平行四边形的判定优质课ppt课件: 这是一份数学八年级下册18.1.2 平行四边形的判定优质课ppt课件,共27页。PPT课件主要包含了平行四边形的性质1,平行四边形的性质2,平行四边形的性质3,你能得出什么猜想呢,猜想1,猜想2,猜想3,平行四边形的判定1,平行四边形的判定2,平行四边形的判定3等内容,欢迎下载使用。
初中数学人教版八年级下册18.1.2 平行四边形的判定精品ppt课件: 这是一份初中数学人教版八年级下册18.1.2 平行四边形的判定精品ppt课件,文件包含18121《平行四边形的判定1》第1课时课件pptx、18121《平行四边形的判定1》第1课时导学案doc、18121《平行四边形的判定1》教案doc等3份课件配套教学资源,其中PPT共20页, 欢迎下载使用。