2023届高三寒假数学二轮微专题45讲 37.圆锥曲线中的四点共圆
展开(1)圆锥曲线四点共圆:若两条直线与
二次曲线有四个交点,则这四个交点共圆的充要条件是.
(2)相交弦定理:
2.典例(2021新高考1卷)
在平面直角坐标系中,已知点、,点的轨迹为.
(1)求的方程;
(2)设点在直线上,过的两条直线分别交于、两点和,两点,且,求直线的斜率与直线的斜率之和.
解析:因为,
所以,轨迹是以点、为左、右焦点的双曲线的右支,
设轨迹的方程为,则,可得,,
所以,轨迹的方程为;
(2)设点,若过点的直线的斜率不存在,此时该直线与曲线无公共点,
不妨直线的方程为,即,
联立,消去并整理可得,
设点、,则且.
由韦达定理可得,,
所以,,
设直线的斜率为,同理可得,
因为,即,整理可得,
即,显然,故.
因此,直线与直线的斜率之和为.
3.练习 (2016年高考四川卷第20题)已知椭圆:的一个焦点与短轴的两个端点是正三角形的三个顶点,点在椭圆上.
(1)求椭圆的方程;
(2)设不过原点且斜率为的直线与椭圆交于不同的两点,,线段的中点为,直线与椭圆交于,,证明:.
解 (1)(过程略)椭圆的方程是.
(2)设,,线段的中点为.
可得,把它们相减后分解因式(即点差法),再得
所以,由推论1得四点共圆.再由相交弦定理,立得.
2023届高三寒假数学二轮微专题45讲 28.椭圆中的焦半径与中点弦: 这是一份2023届高三寒假数学二轮微专题45讲 28.椭圆中的焦半径与中点弦,共3页。试卷主要包含了焦半径公式, 中点弦公式等内容,欢迎下载使用。
2023届高三寒假数学二轮微专题45讲 16.实际应用: 这是一份2023届高三寒假数学二轮微专题45讲 16.实际应用,共5页。
2023届高三寒假数学二轮微专题45讲 08.双变量导数中的剪刀模型: 这是一份2023届高三寒假数学二轮微专题45讲 08.双变量导数中的剪刀模型,共6页。试卷主要包含了剪刀模型,已知函数等内容,欢迎下载使用。