![专题56(一元二次)不等式整数解的个数-2023年高考数学优拔尖核心压轴题(选择、填空题)第1页](http://www.enxinlong.com/img-preview/3/3/13934372/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题56(一元二次)不等式整数解的个数-2023年高考数学优拔尖核心压轴题(选择、填空题)第2页](http://www.enxinlong.com/img-preview/3/3/13934372/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![专题56(一元二次)不等式整数解的个数-2023年高考数学优拔尖核心压轴题(选择、填空题)第3页](http://www.enxinlong.com/img-preview/3/3/13934372/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
专题56(一元二次)不等式整数解的个数-2023年高考数学优拔尖核心压轴题(选择、填空题)
展开
这是一份专题56(一元二次)不等式整数解的个数-2023年高考数学优拔尖核心压轴题(选择、填空题),共7页。学案主要包含了方法点拨,典型题示例,巩固训练,答案与提示等内容,欢迎下载使用。
专题56 (一元二次)不等式整数解的个数【方法点拨】不等式(一般是一元二次不等式)的整数解的个数问题,一般采用“分离函数”的方法转化为两函数图象间的位置关系较简单,分离函数的的一般策略是“一动一静,一直一曲,动直定曲”.【典型题示例】例1 若关于的不等式的解集中整数恰有3个,则实数的取值范围是_________.【答案】【解析一】原不等式转化为,则,即而的解为,由得:,则,解之得:.【解析二】易知,则原不等式可化为,令,问题转化为两函数、图象问题,当的图象在的图象的下方时的横坐标为整数点有且仅有三个,如下图则,,解之得故实数的取值范围是.. 【解析三】仿解法二,易知,则原不等式可化为,令 ,,下同解法二利用图象则,即,解之得故实数的取值范围是. 点评: 解法一是直接利用“数”解决,即将一元二次不等式解集中整数恰有3个问题,转化为对应的一元二次方程的解之间恰有三个整数,先将其中一个根的范围进行缩定,然后推测其另一个根的范围,利用之布列不等式求解.解法难度较大,不建议使用.而解法二、三,其关键是利用“形”解决,即将一元二次不等式解集中整数恰有3个问题,转化为满足不等关系的函数图象间的横坐标恰有三个整数,从两种解法可以看出,解法三更简单,可谓实现“秒杀”,这对学生的转化能力提出更高的要求.该方法的重中之重在于“分离函数”的能力,一般遵循“一动一静,一直一曲,动直定曲”的原则进行.例2 已知函数,过点作曲线的两条切线,切点分别为,,其中.若在区间内存在唯一整数,则实数的取值范围是 .【答案】【分析】利用导数的几何意义,不难得出是方程的两个根,分离函数,问题转化为两函数的交点横坐标间存在唯一整数,利用“形”,易知该整数为1,故只需,解之得. 【巩固训练】1.(多选题)若关于的不等式组的整数解的集合为,则整数k的值可以是_________.A.-3; B. 0; C. 1; D. 2 .2.若关于的不等式的解集中至多包含2个整数,则实数的取值范围是_________.A.(-3,5); B. (-3,2); C. [-3,5]; D. [-2,4] .3.设集合,集合.若中恰含有一个整数,则实数的取值范围是( )A. B. C. D. 4.设0<b<1+a,若关于x 的不等式>的解集中的整数恰有3个,则( ) A. B. C. D.5.已知关于的不等式组有唯一实数解,则实数的取值是_________.6. 若关于x 的不等式的解集中的整数恰有2个,则实数a的取值范围是 . 7. 若关于的不等式只有两个整数解1和2,则实数的值是_______. 【答案与提示】1.【答案】ABC【提示】由得,,故,即.2.【答案】C【提示】由结合数轴立得.3.【答案】B.【解析】,因为函数的对称轴为,,根据对称性可知要使中恰含有一个整数,则这个整数解为2,所以有且,即,选B.4.【答案】C【解析】由题得不等式,设,,利用函数图象转化为其在点处的函数值大小关系.5.【答案】 6.【答案】【解析】分离变量,不等式x2ax+2a<0可转化为x2<a(x2),构造函数f(x)=x2,g(x)= a(x2).如图一,当a>0,利用导数易求出切点P(4,16),欲使不等式x2ax+2a<0的解集中恰有两个整数,其解集中必要整数4,则另一解必为3或5,比较过这两点的直线的斜率,可得;如图二,当a<0,欲使不等式x2ax+2a<0的解集中恰有两个整数,其解集中必要整数0,则另一解必为1或-1,比较过这两点的直线的斜率,可得;综上可得,实数a的取值范围是:或. 6.【答案】【提示】由得,设,故,解得.7.【答案】0【分析】先解出不等式,然后根据整数解确定的值.【解析】原不等式化为,所以,因为整数中只有1,2是不等式的解,0和3都是不是解,则,所以.时,不等式的解为满足题意.故答案为:0.
相关学案
这是一份专题59+二元权方和不等式-2023年高考数学优拔尖核心压轴题(选择、填空题),共6页。学案主要包含了方法点拨,典型题示例,巩固训练,答案与提示等内容,欢迎下载使用。
这是一份专题58+多次使用基本不等式-2023年高考数学优拔尖核心压轴题(选择、填空题),共7页。学案主要包含了方法点拨,典型题示例,巩固训练,答案或提示等内容,欢迎下载使用。
这是一份专题54利用拆凑法求不等式的最值-2023年高考数学优拔尖核心压轴题(选择、填空题),共6页。学案主要包含了方法点拨,典型题示例,巩固训练,答案与提示等内容,欢迎下载使用。
![文档详情页底部广告位](http://www.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)