高考数学三轮冲刺压轴小题23 概率中的应用问题 (2份打包,解析版+原卷版)
展开【方法综述】
概率与统计的问题在高考中的地位相对稳定,而由于概率与统计具有较强的现实应用背景,在近几年的高考中,概率与统计问题在高考中所占的地位有向压轴题变化的趋势。概率与统计的热点问题主要表现在一是:以数学文化和时代发展为背景设置概率统计问题 ,二是概率统计与函数、方程、不等式及数列等相结合的问题。此类问题的解决,需要考生由较强的阅读理解能力,体现考生的数学建模、数据分析、数学运算及逻辑推理等核心素养。先就此类问题进行分析、归类,以帮助考生提升应试能力。
【解答策略】
类型一 以数学文化和时代发展为背景的概率问题
【例1】如图为我国数学家赵爽约3世纪初在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不同,则区域涂色不相同的概率为
A. B. C. D.
【例2】冠状病毒是一个大型病毒家族,己知可引起感冒以及中东呼吸综合征()和严重急性呼吸综合征()等较严重疾病.而今年出现在湖北武汉的新型冠状病毒()是以前从未在人体中发现的冠状病毒新毒株.人感染了新型冠状病毒后常见体征有呼吸道症状、发热、咳嗽、气促和呼吸困难等.在较严重病例中,感染可导致肺炎、严重急性呼吸综合征、肾衰竭,甚至死亡.
某医院为筛查冠状病毒,需要检验血液是否为阳性,现有n()份血液样本,有以下两种检验方式:
方式一:逐份检验,则需要检验n次.
方式二:混合检验,将其中k(且)份血液样本分别取样混合在一起检验.
若检验结果为阴性,这k份的血液全为阴性,因而这k份血液样本只要检验一次就够了,如果检验结果为阳性,为了明确这k份血液究竟哪几份为阳性,就要对这k份再逐份检验,此时这k份血液的检验次数总共为.
假设在接受检验的血液样本中,每份样本的检验结果是阳性还是阴性都是独立的,且每份样本是阳性结果的概率为p().现取其中k(且)份血液样本,记采用逐份检验方式,样本需要检验的总次数为,采用混合检验方式,样本需要检验的总次数为.
(1)若,试求p关于k的函数关系式;
(2)若p与干扰素计量相关,其中()是不同的正实数,
满足且()都有成立.
(i)求证:数列等比数列;
(ii)当时,采用混合检验方式可以使得样本需要检验的总次数的期望值比逐份检验的总次数的期望值更少,求k的最大值
【举一反三】
1.根据党中央关于“精准”脱贫的要求,我市某农业经济部门派四位专家对三个县区进行调研,每个县区至少派一位专家,则甲,乙两位专家派遣至同一县区的概率为( )
A. B. C. D.
2.我国历法中将一年分为春、夏、秋、冬四个季节,每个季节有六个节气,如夏季包含立夏、小满、芒种、夏至、小暑以及大暑.某美术学院甲、乙、丙、丁四位同学接到绘制二十四节气的彩绘任务,现四位同学抽签确定各自完成哪个季节中的六幅彩绘,在制签及抽签公平的前提下,甲没有抽到绘制春季六幅彩绘任务且乙没有抽到绘制夏季六幅彩绘任务的概率为_________.
3.据《孙子算经》中记载,中国古代诸侯的等级从低到高分为:男、子、伯、候、公,共五级.现有每个级别的诸侯各一人,共五人要把80个橘子分完且每人都要分到橘子,级别每高一级就多分m个(m为正整数),若按这种方法分橘子,“公”恰好分得30个橘子的概率是
类型二 概率与函数、方程、不等式及数列等相结合的问题
【例3】甲乙两人进行乒乓球比赛,现采用三局两胜的比赛制度,规定每一局比赛都没有平局(必须分出胜负),且每一局甲赢的概率都是p,随机变量X表示最终的比赛局数,若0<p<,则( )
A.E(X)= B.E(X)> C.D(X)> D.D(X)<
【例4】设一个正三棱柱ABC﹣DEF,每条棱长都相等,一只蚂蚁从上底面ABC的某顶点出发,每次只沿着棱爬行并爬到另一个顶点,算一次爬行,若它选择三个方向爬行的概率相等,若蚂蚁爬行10次,仍然在上底面的概率为P10,则P10为( )
A. B.
C. D.
【举一反三】
1.随机变量ξ有四个不同的取值,且其分布列如下:
ξ | 2sinαsinβ | 3cosαsinβ | 3sinαcosβ | cosαcosβ |
P | t |
则E(ξ)的最大值为( )
A.﹣1 B.﹣ C. D.1
2.已知函数f(x)=,若,则方程[f(x)]2﹣af(x)+b=0有五个不同根的概率为( )
A. B. C. D.
【强化训练】
1.2019年5月22日具有“国家战略”意义的“长三角一体化”会议在芜湖举行;长三角城市群包括:上海市以及江苏省、浙江省、安徽省三省部分城市,简称“三省一市”. 现有4 名高三学生准备高考后到上海市、江苏省、浙江省、安徽省四个地方旅游, 假设每名同学均从这四个地方中任意选取一个去旅游, 则恰有一个地方未被选中的概率为( )
A. B. C. D.
2.设函数,若是从三个数中任取一个,是从五个数中任取一个,那么恒成立的概率是( )
A. B. C. D.
3.生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节,“礼”和“乐”必须分开安排的概率为( )
A. B. C. D.
4.已知数列{an}满足a1=0,且对任意n∈N*,an+1等概率地取an+1或an﹣1,设an的值为随机变量ξn,则( )
A.P(ξ3=2)= B.E(ξ3)=1
C.P(ξ5=0)<P(ξ5=2) D.P(ξ5=0)<P(ξ3=0)
5.如果不是等差数列,但若,使得,那么称为“局部等差”数列.已知数列的项数为4,记事件:集合,事件:为“局部等差”数列,则条件概率( )
A. B. C. D.
6.某校高一年级研究性学习小组利用激光多普勒测速仪实地测量复兴号高铁在某时刻的速度,其工作原理是:激光器发出的光平均分成两束射出,在被测物体表面汇聚,探测器接收反射光,当被测物体横向速度为零时,反射光与探测光频率相同,当横向速度不为零时,反射光相对探测光会发生频移,其中为测速仪测得被测物体的横向速度,为激光波长,为两束探测光线夹角的一半,如图,若激光测速仪安装在距离高铁处,发出的激光波长为(),某次检验中可测频移范围为()至(),该高铁以运行速度(至)经过时,可测量的概率为( )
A. B. C. D.
7.新冠疫情期间,网上购物成为主流.因保管不善,五个快递ABCDE上送货地址模糊不清,但快递小哥记得这五个快递应分别送去甲乙丙丁戊五个地方,全部送错的概率是( )
A. B. C. D.
8.吸烟有害健康,小明为了帮助爸爸戒烟,在爸爸包里放一个小盒子,里面随机摆放三支香烟和三支跟香烟外形完全一样的“戒烟口香糖”,并且和爸爸约定,每次想吸烟时,从盒子里任取一支,若取到口香糖则吃一支口香糖,不吸烟;若取到香烟,则吸一支烟,不吃口香糖,假设每次香烟和口香糖被取到的可能性相同,则“口香糖吃完时还剩2支香烟”的概率为( )
A. B.
C. D.
9.某停车场只有并排的8个停车位,恰好全部空闲,现有3辆汽车依次驶入,并且随机停放在不同车位,则至少有2辆汽车停放在相邻车位的概率是
A. B. C. D.
10.验证码就是将一串随机产生的数字或符号,生成一幅图片,图片里加上一些干扰象素(防止),由用户肉眼识别其中的验证码信息,输入表单提交网站验证,验证成功后才能使用某项功能.很多网站利用验证码技术来防止恶意登录,以提升网络安全.在抗疫期间,某居民小区电子出入证的登录验证码由0,1,2,…,9中的五个数字随机组成.将中间数字最大,然后向两边对称递减的验证码称为“钟型验证码”(例如:如14532,12543),已知某人收到了一个“钟型验证码”,则该验证码的中间数字是7的概率为__________.
11.我国历法中将一年分为春、夏、秋、冬四个季节,每个季节有六个节气,如夏季包含立夏、小满、芒种、夏至、小暑以及大暑.某美术学院甲、乙、丙、丁四位同学接到绘制二十四节气的彩绘任务,现四位同学抽签确定各自完成哪个季节中的六幅彩绘,在制签及抽签公平的前提下,甲没有抽到绘制春季六幅彩绘任务且乙没有抽到绘制夏季六幅彩绘任务的概率为_________.
12.欧阳修《卖油翁》中写道:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌滴沥之,自钱孔入,而钱不湿.已知铜钱是直径为4 cm的圆面,中间有边长为1 cm的正方形孔,若随机向铜钱上滴一滴油(油滴整体落在铜钱内),则油滴整体(油滴是直径为0.2 cm的球)正好落入孔中的概率是_____.(不作近似计算)
13.甲乙两位同学玩游戏,对于给定的实数,按下列方法操作一次产生一个新的实数:由甲、乙同时各掷一枚均匀的硬币,如果出现两个正面朝上或两个反面朝上,则把乘以2后再减去6;如果出现一个正面朝上,一个反面朝上,则把除以2后再加上6,这样就可得到一个新的实数,对实数仍按上述方法进行一次操作,又得到一个新的实数,当时,甲获胜,否则乙获胜,若甲胜的概率为,则的取值范围是____.
14.某动漫公司推出漫画角色盲盒周边售卖,每个盲盒中等可能的放入该公司的款经典动漫角色玩偶中的一个.小明购买了个盲盒,则他能集齐个不同动漫角色的概率是______________.
15.某公司根据上年度业绩筛选出业绩出色的,,,四人,欲从此4人中选择1人晋升该公司某部门经理一职,现进入最后一个环节:,,,四人每人有1票,必须投给除自己以外的一个人,并且每个人投给其他任何一人的概率相同,则最终仅一人获得最高得票的概率为___________.
16.2020年新冠肺炎肆虐,全国各地千千万万的医护者成为“最美逆行者”,医药科研工作者积极研制有效抗疫药物,中医药通过临床筛选出的有效方剂“三药三方”(“三药”是指金花清感颗粒、连花清瘟颗粒(胶囊)和血必净注射液;“三方”是指清肺排毒汤、化湿败毒方和宜肺败毒方)发挥了重要的作用.甲因个人原因不能选用血必净注射液,甲、乙两名患者各自独立自主的选择一药一方进行治疗,则两人选取药方完全不同的概率是___________.
17.某校甲、乙、丙三名教师每天使用1号录播教室上课的概率分别是0.6,0.6,0.8,这三名教师是否使用1号录播教室相互独立,则某天这三名教师中至少有一人使用1号录播教室上课的概率是______.
18.为了解某次测验成绩,在全年级随机地抽查了100名学生的成绩,得到频率分布直方图(如图),由于某种原因使部分数据丢失,但知道后5组的学生人数成等比数列,设90分以下人数为38,最大频率为b,则b的值为 .
19.某保险公司新开设了一项保险业务,规定该份保单在一年内如果事件E发生,则该公司要赔偿a元,假若在一年内E发生的概率为p,为使公司受益的期望值不低于a的,公司应要求该份保单的顾客缴纳的保险金最少为 元.
20.乒乓球比赛,三局二胜制.任一局甲胜的概率是,甲赢得比赛的概率是,则的最大值为_____.
高考数学三轮冲刺压轴小题27 临界知识问题 (2份打包,解析版+原卷版): 这是一份高考数学三轮冲刺压轴小题27 临界知识问题 (2份打包,解析版+原卷版),文件包含高考数学三轮冲刺压轴小题27临界知识问题解析版doc、高考数学三轮冲刺压轴小题27临界知识问题原卷版doc等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
高考数学三轮冲刺压轴小题26 创新型问题 (2份打包,解析版+原卷版): 这是一份高考数学三轮冲刺压轴小题26 创新型问题 (2份打包,解析版+原卷版),文件包含高考数学三轮冲刺压轴小题26创新型问题解析版doc、高考数学三轮冲刺压轴小题26创新型问题原卷版doc等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
高考数学三轮冲刺压轴小题24 统计中的应用问题 (2份打包,解析版+原卷版): 这是一份高考数学三轮冲刺压轴小题24 统计中的应用问题 (2份打包,解析版+原卷版),文件包含高考数学三轮冲刺压轴小题24统计中的应用问题解析版doc、高考数学三轮冲刺压轴小题24统计中的应用问题原卷版doc等2份试卷配套教学资源,其中试卷共35页, 欢迎下载使用。